Файл: Плотинные гидроэлектростанции.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 107

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Министерство науки и высшего образования РФ

ФГБОУ «Тверской государственный технический университет»

Институт заочного и дополнительного профессионального образования

Профиль: «Энергетика и электротехника»

Реферат по дисциплине: «Общая энергетика»

На тему: «Плотинные гидроэлектростанции»

Автор:

Самущенков Антон Павлович

Научный руководитель:

Павлова Юлия Михайловна

Подпись руководителя ______________

Дата проверки: ______________

Оценка: ______________

Тверь. 2023

Содержание

  1. Введение……………………………………………………………

  2. Электрические станции, их виды…………………………………...

  3. Гидравлические электрические станции…………………………...

  4. Немного об истории ГЭС……………………………………………

  5. Принцип работы и виды гидроэлектростанций……………………

  6. Гидроэнергетика в мире……………………………………………

  7. Гидроэнергетика России…………………………………………….

  8. Аварии и происшествие на ГЭС…………………………………….

  9. Заключение…………………………………………………………

  10. Список литературы………………………………………………….


Введение

Энергетическая промышленность наших дней - одна из чаще всего обсуждаемых сфер жизнедеятельности страны, ведь именно сейчас она приобретает всё более многогранные экономические, технические и даже политические аспекты.

Актуальность выбранной темы контрольной работы не вызывает сомнений, если вспомнить, что научно-технический прогресс невозможен без развития энергетики. И для повышения производительности труда первостепенное значение имеет автоматизация производственных процессов, замена человеческого труда машинным. Но подавляющее большинство технических средств механизации и автоматизации (оборудование, приборы, ЭВМ) имеет электрическую основу. Особенно широкое применение электрическая энергия получила для привода в действие электрических моторов.

Электроэнергия нужна человечеству, причем потребности в ней увеличиваются с каждым годом. Вместе с тем, запасы традиционных органических топлив (нефти, угля, газа) конечны. Поэтому на сегодняшний день крайне важно найти выгодные источники электроэнергии, причем - выгодные не только с точки зрения дешевизны топлива, но и с точки зрения простоты конструкций, эксплуатации, стоимости необходимых для постройки станции материалов, их долговечности. Таким источником может стать гидравлическая электростанция.


Данная контрольная работа направлена на рассмотрение особенностей именно этого типа электростанций. Соответственно, цель работы - прежде всего ознакомление с современным положением дел в этой проблематике и выявление плюсов и минусов использования гидроресурсов для получения энергии.


Электрические станции, их виды

Электрическая станция - совокупность установок, оборудования и аппаратуры, используемых непосредственно для производства электрической энергии, а также необходимые для этого сооружения и здания, расположенные на определённой территории.

В зависимости от источника энергии различают:

тепловые электростанции (ТЭС), использующие природное топливо;

гидроэлектростанции (ГЭС), использующие энергию падающей воды запруженных рек;

атомные электростанции (АЭС), использующие ядерную энергию;

иные электростанции, использующие ветровую, солнечную, геотермальную и другие виды энергий.

В нашей стране производится и потребляется огромное количество электроэнергии. Она почти полностью вырабатывается тремя основными типами электростанций: тепловыми, атомными и гидроэлектростанциями.


Гидравлические электрические станции

Гидроэлектростанции являются весьма эффективными источниками энергии. Необходимый для этого подпор воды создается плотинами, которые воздвигают на реках и каналах. Для эффективного производства электроэнергии на ГЭС необходимы два основных фактора: гарантированная обеспеченность водой круглый год и возможно большие уклоны реки, благоприятствуют гидростроительству каньонообразные виды рельефа.

Особенности ГЭС:

себестоимость электроэнергии на российских ГЭС более чем в два раза ниже, чем на тепловых электростанциях; [1]

требуется намного меньше обслуживающего персонала;

обладают очень высоким коэффициентом полезного действия (более 80%) ;

гидравлические установки позволяют сокращать перевозки и экономить минеральное топливо (на 1 кВт-ч расходуется примерно 0, 4 т угля) ;

турбины ГЭС допускают работу во всех режимах от нулевой до максимальной мощности и позволяют быстро изменять мощность при необходимости, выступая в качестве регулятора выработки электроэнергии;

сток реки является возобновляемым источником энергии;

значительно меньшее воздействие на воздушную среду, чем другими видами электростанций;



строительство ГЭС обычно более капиталоёмкое, чем тепловых станций;

часто эффективные ГЭС удалены от потребителей;

водохранилища занимают значительные территории, но с 1963 г. начали использоваться защитные сооружения (Киевская ГЭС), которые ограничивали площадь водохранилища, и, как следствие, ограничивали площадь затопляемой поверхности (поля, луга, поселки) ;

плотины зачастую изменяют характер рыбного хозяйства, поскольку перекрывают путь к нерестилищам проходным рыбам, однако часто благоприятствуют увеличению запасов рыбы в самом водохранилище и осуществлению рыбоводства.

Немного об истории ГЭС

Гидроэнергия, равно как и мускульная энергия людей и животных, а также солнечная энергия, используется очень давно. Упоминание об использовании энергии воды на водяных мельницах для помола зерна и дутья воздуха при выплавке металла относится к концу II в. до н. э. С течением столетий размеры и эффективность водяных колёс увеличились. В XI в. в Англии и Франции одна мельница приходилась на 250 человек. В это время сфера применения мельниц расширилась. Они стали использоваться в сукновальном производстве, при варке пива, распилке леса, для работы откачивающих насосов, на маслобойнях. Можно считать, что современная гидроэнергетика родилась в 1891 году. В этом году русский инженер Михаил Осипович Доливо-Добровольский, эмигрировавший в Германию по причине «политической неблагонадёжности», должен был демонстрировать на электротехнической выставке во Франкфурте-на-Майне изобретённый им двигатель переменного тока. Этот двигатель мощностью около 100 киловатт в эпоху господства постоянного электрического тока сам по себе должен был стать гвоздём выставки, но изобретатель решил для его питания построить ещё и совершенно неожиданное по тем временам сооружение - гидроэлектростанцию. В небольшом городке Лауффен Доливо-Добровольский установил генератор трёхфазного тока, который вращала небольшая водяная турбина. Электрическая энергия передавалась на территорию выставки по невероятно протяжённой для тех лет линий передачи длиной 175 километров (это сейчас линии передач длиной в тысячи километров никого не удивляют, тогда же подобное строительство было единодушно признано невозможным). Всего за несколько лет до этого события виднейший английский инженер и физик Осборн Рейнольдс в своих Канторовских лекциях неопровержимо, казалось бы доказал, что при передаче энергии по средствам трансмиссии потери энергии составляют всего лишь 1, 4% на милю, в то время как при передачи электрической энергии по проводам на такое же расстояние потери составят 6%. Опираясь на данные опытов, он сделал вывод о том, что при использовании электрического тока на другом конце линии передачи вряд ли удастся иметь более15-20% начальной мощности. В то же время, считал он, можно быть уверенным в том, что при передаче энергии приводным тросом сохранится 90% мощности. Этот «неоспоримый» вывод был успешно опровергнут практикой работы первенца гидроэнергетики в Лауффене.


Но эра гидроэнергетики тогда ещё не наступила. Преимущества гидроэлектростанций очевидны - постоянно возобновляемый самой природой запас энергии, простота эксплуатации, отсутствие загрязнения окружающей среды. Да и опыт постройки и эксплуатации водяных колёс мог бы оказать не малую помощь гидроэнергетикам. Однако постройка плотины крупной гидроэлектростанции оказалось задачей куда более сложной, чем постройка небольшой запруды для вращения мельничного колеса. Чтобы привести во вращение мощные гидротурбины, нужно накопить за турбиной огромный запас воды. Для постройки плотины требуется уложить такое количество материалов, что объём гигантских египетских пирамид по сравнению с ним покажется ничтожным. Поэтому в начале ХХ века было построено всего несколько гидроэлектростанций. Это было лишь началом. Освоение гидроэнергоресурсов осуществлялось быстрыми темпами, и в 30-е годы ХХ века была завершена реализация таких крупных проектов, как ГЭС Гувер в США мощностью 1, 3 гиговатт. Строительство подобных мощных ГЭС вызвало рост использования энергии в промышленно развитых странах, а это, в свою очередь, дало толчок программам освоения крупных гидроэнергетических потенциалов.

В настоящее время использование энергии воды по-прежнему остается актуальным, а основным направлением является производство электроэнергии.


Принцип работы и виды гидроэлектростанций

Гидравлические установки представлены гидроэлектростанциями (ГЭС), гидроаккумулирующими электростанциями (ГАЭС) и приливными электростанциями (ПЭС). Их размещение во многом зависит от природных условий, например, характера и режима реки. В горных районах обычно возводятся высоконапорные ГЭС, на равнинных реках действуют установки с меньшим напором, но большим расходом воды. Гидростроительство в условиях равнин сложнее из-за преобладания мягких оснований под плотинами и необходимости иметь крупные водохранилища для регуляции стока. Сооружение ГЭС на равнинах вызывает затопление прилегающих территорий, что приносит значительный материальный ущерб.

ГЭС состоит из последовательной цепи гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в механическую энергию вращения, которая, в свою очередь, преобразуется в электрическую энергию.


Напор ГЭС создаётся концентрацией падения реки на используемом участке плотиной, либо деривацией, либо плотиной и деривацией совместно. Основное энергетическое оборудование ГЭС размещается в здании ГЭС: в машинном зале электростанции - гидроагрегаты, вспомогательное оборудование, устройства автоматического управления и контроля; в центральном посту управления - пульт оператора-диспетчера или автооператор гидроэлектростанции. Повышающая трансформаторная подстанция размещается как внутри здания ГЭС, так и в отдельных зданиях или на открытых площадках. Распределительные устройства зачастую располагаются на открытой площадке. Здание ГЭС может быть разделено на секции с одним или несколькими агрегатами и вспомогательным оборудованием, отделённые от смежных частей здания. При здании ГЭС или внутри него создаётся монтажная площадка для сборки и ремонта различного оборудования и для вспомогательных операций по обслуживанию ГЭС.

По установленной мощности (в Мвт) различают ГЭС мощные (свыше 250), средние (до 25) и малые (до 5). Мощность ГЭС зависит от напора Нб (разности уровней верхнего и нижнего бьефа), расхода воды Q (м3/сек), используемого в гидротурбинах, и кпд гидроагрегата hг. По ряду причин (вследствие, например, сезонных изменений уровня воды в водоёмах, непостоянства нагрузки энергосистемы, ремонта гидроагрегатов или гидротехнических сооружений и т. п.) напор и расход воды непрерывно меняются, а кроме того, меняется расход при регулировании мощности ГЭС. Различают годичный, недельный и суточный циклы режима работы ГЭС.

По максимально используемому напору ГЭС делятся на высоконапорные (более 60 м), средненапорные (от 25 до 60 м) и низконапорные (от 3 до 25 м). На равнинных реках напоры редко превышают 100 м, в горных условиях посредством плотины можно создавать напоры до 300 м и более, а с помощью деривации - до 1500 м. Классификация по напору приблизительно соответствует типам применяемого энергетического оборудования: на высоконапорных ГЭС применяют ковшовые и радиально-осевые турбины с металлическими спиральными камерами; на средненапорных - поворотнолопастные и радиально-осевые турбины с железобетонными и металлическими спиральными камерами, на низконапорных - поворотнолопастные турбины в железобетонных спиральных камерах, иногда горизонтальные турбины в капсулах или в открытых камерах. Подразделение ГЭС по используемому напору имеет приблизительный, условный характер.