Файл: Плотинные гидроэлектростанции.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 07.11.2023

Просмотров: 109

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


По принципу использования водных ресурсов и концентрации напоров ГЭС обычно подразделяют на русловые, приплотинные, деривационные с напорной и безнапорной деривацией, смешанные, гидроаккумулирующие и приливные. Русловые и приплотинные ГЭС - наиболее распространенные виды гидроэлектрических станций. В таких ГЭС напор воды создаётся плотиной, перегораживающей реку и поднимающей уровень воды в верхнем бьефе. При этом неизбежно некоторое затопление долины реки. В случае сооружения двух плотин на том же участке реки площадь затопления уменьшается. На равнинных реках наибольшая экономически допустимая площадь затопления ограничивает высоту плотины. Русловые и приплотинные ГЭС строят и на равнинных многоводных реках и на горных реках, в узких сжатых долинах.

В состав сооружений русловой ГЭС, кроме плотины, входят здание ГЭС и водосбросные сооружения. Состав гидротехнических сооружений зависит от высоты напора и установленной мощности. У русловой ГЭС здание с размещенными в нём гидроагрегатами служит продолжением плотины и вместе с ней создаёт напорный фронт. При этом с одной стороны к зданию ГЭС примыкает верхний бьеф, а с другой - нижний бьеф. Подводящие спиральные камеры гидротурбин своими входными сечениями закладываются под уровнем верхнего бьефа, выходные же сечения отсасывающих труб погружены под уровнем нижнего бьефа.

В соответствии с назначением гидроузла в его состав могут входить судоходные шлюзы или судоподъёмник, рыбопропускные сооружения, водозаборные сооружения для ирригации и водоснабжения. В русловых ГЭС иногда единственным сооружением, пропускающим воду, является здание ГЭС. В этих случаях полезно используемая вода последовательно проходит входное сечение с мусорозадерживающими решётками, спиральную камеру, гидротурбину, отсасывающую трубу, а по специальным водоводам между соседними турбинными камерами производится сброс паводковых расходов реки. Для русловых ГЭС характерны напоры до 30-40 м; к простейшим русловым ГЭС относятся также ранее строившиеся сельские ГЭС небольшой мощности. На крупных равнинных реках основное русло перекрывается земляной плотиной, к которой примыкает бетонная водосливная плотина и сооружается здание ГЭС.

Плотинные ГЭС строятся при более высоких напорах воды. В этом случае река полностью перегораживается плотиной, а само здание ГЭС располагается за плотиной, в нижней её части. Вода, в этом случае, подводится к турбинам через специальные напорные тоннели, а не непосредственно, как в русловых ГЭС.


Деривационные гидроэлектростанции строят в тех местах, где велик уклон реки. Необходимая концентрация воды в ГЭС такого типа создается посредством деривации. Вода отводится из речного русла через специальные водоотводы. Последние - спрямлены, и их уклон значительно меньший, нежели средний уклон реки. В итоге вода подводится непосредственно к зданию ГЭС. Деривационные ГЭС могут быть разного вида - безнапорные или с напорной деривацией. В случае с напорной деривацией, водовод прокладывается с большим продольным уклоном. В другом случае в начале деривации на реке создается более высокая плотина, и создается водохранилище - такая схема еще называется смешанной деривацией, так как используются оба метода создания необходимой концентрации воды.

Гидроаккумулирующие электростанции (ГАЭС) способны аккумулировать вырабатываемую электроэнергию, и пускать её в ход в моменты пиковых нагрузок. Принцип работы таких электростанций следующий: в определенные периоды (не пиковой нагрузки), агрегаты ГАЭС работают как насосы от внешних источников энергии и закачивают воду в специально оборудованные верхние бассейны. Когда возникает потребность, вода из них поступает в напорный трубопровод и приводит в действие турбины.

Гидроэнергетика в мире

В настоящее время гидроэлектростанции обеспечивают примерно одну пятую мирового производства электроэнергии. Большинство из них -

крупные электростанции мощностью свыше 10-15 МВт. Однако возможности строительства крупных ГЭС в Европе практически исчерпаны, и в настоящее время внимание направлено на развитие малых ГЭС, мощность которых не превышает 10 МВт (иногда даже принимается лимит 5 МВт). Они генерируют электричество, преобразуя энергию малых рек, каналов, промышленных водотоков. Сегодня эта технология получения электричества является технически выверенной и экономически выгодной. Благодаря постоянному совершенствованию конструкции и контролирующего оборудования улучшаются эксплуатационные характеристики малых ГЭС и облегчается их продвижение на рынок экологически чистых технологий. Малая ГЭС с установленной мощностью 1 МВт может вырабатывать 6000 МВт*ч в год, предотвращая при этом эмиссию 4000 тонн углекислого газа, которые были бы выброшены в окружающую среду при выработке этого же количества электричества электростанцией, работающей на угле. Экономический потенциал гидроэнергии в мире составляет 7300 ТВт*ч/год. Из этого объема 32% уже освоено, в том числе 5% за счет малых ГЭС. В 1995 году в 15 странах ЕС было получено 33 ТВт*ч/год. К 2010 году во всем мире за счет малой гидроэнергетики в 2010 году планировалось получить 220 ТВт*ч/год, а установленная мощность должна была достигнуть 55 ГВт. Быстрый рост ожидался, в основном, в Азии, Латинской Америке, Центральной и Восточной Европе и странах бывшего Советского Союза. В странах ЕС усилия будут сосредоточены, по-видимому, на реконструкции старых ГЭС, нежели на строительстве новых объектов.



Абсолютным лидером по выработке гидроэнергии на душу населения является Исландия. Кроме неё этот показатель наиболее высок в Норвегии, Канаде и Швеции. Наиболее активное гидростроительство на начало 2000-х вел Китай, для которого гидроэнергия является основным потенциальным источником энергии. В этой стране размещено до половины малых гидроэлектростанций мира, а также крупнейшая ГЭС мира «Три ущелья« на реке Янцзы и строящийся крупнейший по мощности каскад ГЭС. Ещё более крупная ГЭС «Гранд Инга« мощностью 39 ГВт планируется к сооружению международным консорциумом на реке Конго в Демократической Республике Конго (бывший Заир) .

Выгоды и препятствия для развития малых ГЭС

Малые ГЭС, как было показано, являются наиболее чистым способом получения энергии. Поэтому, в цене произведенного кВт*час, помимо рыночных ценовых аргументов, должен быть учтен фактор минимального воздействия на окружающую среду. Без учета экологических и социальных факторов, строительство крупной электростанции на газе зачастую оказывается проще, чем восстановление и пуск десятка 100 кВт-ных малых ГЭС. Самая большая проблема состоит в том, что намерения, провозглашенные законодательно, не осуществляются на практике. Проблемы возникают и на уровне местных администраций. Иногда небольшие местные организации оказывают сопротивление строительству отдельных крупных объектов на основе ВИЭ, не учитывая при этом более широкие выгоды возобновляемой энергетики.

Типичной является ситуация, когда население деревни или отдельного района ничего не получает от установки малой ГЭС в зоне проживания, только собственник ГЭС получит прибыль, используя местную реку. Поэтому новая инициатива помощи этим небольшим поселкам со стороны сектора малой гидроэнергетики - отмена взимания платы за электричество, произведенное малой ГЭС с жителей тех муниципалитетов, где была установлена ГЭС - заслуживает особой позитивной оценки.

И все же фирмы, работающие с малой гидроэнергетикой, могли бы работать более эффективно. Недостаток достоверной информации, распространяемой среди местного населения, слабое взаимодействие фирм с локальными природоохранными группами, безусловно, являются препятствиями на пути продвижения малой гидроэнергетики.

Гидроэнергетика России

По состоянию на 2009 год в России имеется 15 гидравлических электростанций свыше 1000 МВт (действующих, достраиваемых или находящихся в замороженном строительстве), и более сотни гидроэлектростанций меньшей мощности. Россия обладает вторым в мире по объему гидропотенциалом. 852 млрд. кВтч можно производить ежегодно за счет энергии российских рек, это составляет 12% от мирового гидропотенциала.


Самые мощные ГЭС сооружены на Волге, Каме, Ангаре, Енисее, Оби и Иртыше. Каскад гидроэлектростанций представляет собой группу ГЭС, расположенных ступенями по течению водного потока с целью полного последовательного использования его энергии. Установки в каскаде обычно связаны общностью режима, при котором водохранилища верхних ступеней регулирующе влияют на водохранилища нижних ступеней. На основе ГЭС восточных районов формируются промышленные комплексы, специализирующиеся на энергоемких производствах.

В Сибири сосредоточены наиболее эффективные по технико-экономическим показателям ресурсы. Одним из примеров этого может служить Ангаро-Енисейский каскад, в состав которого входят самые крупные гидроэлектростанции страны: Саяно-Шушенская (6, 4 млн. кВт), Красноярская (6 млн. кВт), Братская (4, 6 млн. кВт), Усть-Илимская (4, 3 млн. кВт). Строится Богучановская ГЭС (4 млн. кВт). Общая мощность каскада в настоящее время - более 20 млн. кВт. Каргиев В.М.Малая гидроэнергетика России - современное состояние // Ежеквартальный информационный бюллетень «Возобновляемая Энергия». - апрель, 2002. - с. 4-8

Гидроэнергетика занимает важное место в энергобалансе России. В настоящее время около 20% (165 млрд. кВт*час) электроэнергии страны производится на гидроэлектростанциях, при общей установленной мощности ГЭС России 44, 1 ГВт. Значительная часть неиспользованного потенциала находится в таких энергодефицитных районах, как Северный Кавказ и Дальний Восток.

Несмотря на то, что потенциал для развития гидроэнергетики России велик, в ближайшее время не предвидится интенсивного строительства ГЭС, что связано как с экономическими причинами, так и с более жесткими экологическими требованиями. Более того, возможности строительства больших ГЭС в Европейской части страны практически исчерпаны. В этой связи возрастает интерес к использованию энергии малых рек и водотоков. Как известно, гидроэнергетические проекты требуют больших капиталовложений, но, в то же время, расходы при производстве электроэнергии намного меньше. Строительство малых ГЭС требует меньших начальных инвестиций, поэтому более реально в современных экономических условиях. Большие традиционные ГЭС требуют отвода больших площадей под затопление, что приводит к серьезным экологическим последствиям и приводит к увеличению затрат на защиту окружающей среды и расходов на сглаживание социального воздействия (переселение людей, затопление традиционных мест обитания и т. п.).


Правильно спроектированные малые ГЭС (обычно менее 10 МВт) обычно легко интегрируются в местную экосистему. Малые ГЭС составляют самую большую долю среди других электрогенерирующих ВИЭ как в Европе, так и в мире. В мире установлено примерно 47 ГВт с потенциалом - техническим и экономическим - Малая гидроэнергетика России - современное состояние около 180 ГВт. В Европе установленная мощность - около 9, 5 ГВт, намечено к 2010 году нарастить эту мощность до 14 ГВт. В России в настоящее время насчитывается около 300 малых ГЭС и 50 микроГЭС общей мощностью около 1, 3 ГВт, которые производят ежегодно около 2, 2 млрд. кВтч электроэнергии. Наиболее экономически целесообразными направлениями развития малой гидроэнергетики в настоящее время являются:

* реконструкция и восстановление существовавших ранее малых ГЭС;

* строительство малых и микроГЭС при сооружаемых гидроузлах, на существующих водохранилищах неэнергетического назначения с перепадами;

* сооружение малых ГЭС на небольших реках.

К малым ГЭС относятся станции мощностью до 30 МВт с мощностью единичного агрегата до 10 МВт. К микроГЭС относятся гидроагрегаты мощностью до 100 кВт. Большинство малых ГЭС работают по так называемой «run-of-river» схеме, то есть без использования больших водохранилищ. Такие безрезервуарные малые ГЭС производят электроэнергию тогда, когда воды в реке достаточно для работы гидротурбин; когда расход воды падает ниже определенной величины, работа малой ГЭС останавливается. Это означает, что автономные схемы малых ГЭС не всегда могут обеспечить непрерывное электроснабжение, за исключением случаев, когда минимальный расход реки обеспечивает нормальную работу ГЭС. Эту проблему можно решить двумя способами. Во-первых, использовать существующие вверх по течению водные резервуары для регулирования расхода. Во-вторых, интегрировать малую ГЭС в систему централизованного электроснабжения. Это, с одной стороны, позволяет автоматически контролировать станцию и удаленно управлять ее параметрами (напряжение, частота), но с другой стороны, приводит к необходимости продавать электроэнергию электросетям по их закупочной цене, которая обычно значительно ниже отпускной цены. Несомненным преимуществом малых ГЭС является возможность полной автоматизации ее работы, что приводит к снижению затрат на обслуживание и, следовательно, снижает стоимость производимой электроэнергии.


Аварии и происшествия на ГЭС