Файл: ЭЛЕКТРЭНЕРГИЯНЫ ӨНДІРУ, ЖЕТКІЗУ ЖӘНЕ ТАРАТУ. 2 БӨЛІМ.docx

Добавлен: 02.02.2019

Просмотров: 1999

Скачиваний: 19

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

 

    Кабельдердің маркалары олардың қиыстырмасын сипаттайтын сөздердің бастапқы әріптерінен тұрады. Бірінші А әрпі алюминий талсымдарына сәйкес келеді. Кабельдердің қабықтары әріптермен белгіленеді: А – алюминий, С – қорғасын, В – поливинилхлорид, Н – резина, наирит; П – полиэтилен; талсымдары бөлек қорғасындалған кабельдер О әрпімен маркаланады. Әртүрлі құрсауланған қорғаныс қабаттары бар кабельдердің маркалары келесі әріптермен белгіленеді: Б – болат таспалар, П – жалпақ болат мырышталған (оцинкованные) сымдар, К -  сондай сымдар, бірақ жұмыр.

    Кабельдің маркасымен қатар әдетте кабельдің ток өткізетін талсымдарының саны мен қимасын көрсетеді. Мысалы,  ААБ 3х120 мәнісі: талсымдары алюминий, алюминий қабығындағы, болат таспалармен құрсауланған, қимасы 120 мм2 үш талсымы бар кабель.

    Газбен толтырылған кабельдер 10 – 110 кВ кернеулерінде қолданылады. Бұл компаундтың салыстырмалы аз санымен қаныққан оқшаулайтын қағазы бар қорғасындалған кабельдер. Кабель инерттік газдың аз мөлшерден тыс қысымында тұрады (әдетте азот), бұл қағаздың оқшаулама қасиеттерін едәуір көтереді. Қысымның тұрақтылығы кеткен газдың үзіліссіз орын толтыруымен өтемделеді.

   Кернеуі 110 және 220 кВ айнымалы токтың кабельдері маймен толтырылып жасалынады. Май қысымда болады. Осыған байланысты орта (110 кВ тораптары үшін) және жоғары (220 кВ үшін) қысымдардың кабельдерін айырады. Майдың қысымы желі трассасында орнатылған қысым бактарымен сүйемелденеді. Майдың қысымы тесілудің негізгі себептерінің бірін жойып, ауа мен иондалудың пайда болуын болдырмайды. Майдың ағатын орындарын табу үшін кабельдер май қысымының сигнализациясымен жабдықталады.

Соңғы кезде эксплуатацияда оқшауламасы тігілген полиэтиленнен жасалған кабельдер кеңінен қолданылуда (4.2 суреті).

  1 – ток өткізетін талсым; 2 – тігілген полиэтиленнен жасалған оқшаулама; 3 – белдік оқшаулама; 4 – тоқылмаған материалдан жасалған біріктіретін таспа; 5 – полиэтиленнен жасалған белдік оқшаулама; 6 – екі болат таспадан жасалған құрсау; 7 – битум; 8 – полиэтилентерефталат үлпегінен жасалған орам; 9 – полиэтиленнен жасалған қабық.

4.2 суреті Оқшауламасы тігілген полиэтиленнен жасалған кабельдің қиыстырмасы


 Қазіргі уақытта Еуропа және Американың өндірісі дамыған елдерінде іс жүзінде күштік кабельдер нарығының 100% оқшауламасы тігілген полиэтиленнен жасалған кабельдер алады. Оқшауламасы қаныққан қағаз кабельдерінен оқшауламасы тігілген полиэтиленнен жасалған кабельдерге өту эксплуатация жасайтын ұйымдардың кабельдердің техникалық параметрлеріне қоятын талаптарының өсуімен байланысты. Мұнда бұл кабельдердің құндылықтары айқын.

Олардың кейбіреулерін қарастырайық:

- жоғары өткізу қабілеті;

- аз салмағы, аз диаметрі және иілу радиусы;

- төменгі зақымдалуы;


 - полиэтилен оқшауламасының тығыздығы аз, салыстырмалы диэлектрлік өтімділігі және диэлектрлік шығындар коэффициенті мәндерінің аздығы;

 - күрделі трассаларда төсеу;

 - арнаулы жабдықты пайдаланбай монтаждау;

 - төсеудің өзіндік құнының едәуір төмендеуі.

          Оқшауламасы тігілген полиэтиленнен жасалған кабельдерінің ерекше қасиеттері қолданылатын оқшаулама материалына байланысты. Полиэтилен қазіргі уақытта кабельдерді жасағанда ең көп қолданылатын оқшаулама материалдарының бірі болып табылады. Бірақ бұрыннан термопластикалық полиэтиленнің маңызды кемшіліктері бар, олардың бастысы балқу температурасына жақын температураларда механикалық қасиеттерінің күрт нашарлауы. Бұл проблеманың шешімі тігілген полиэтиленді қолдану болды.


 

    5 лекция. Электрэнергияны қашықтыққа жеткізу

         Лекцияның мазмұны: энергияны айнымалы және тұрақты токпен қашықтыққа жеткізу.

        Лекцияның мақсаты:  энергияны айнымалы және тұрақты токпен қашықтыққа жеткізу мүмкіндіктерін зерттеу.

 

          5.1 Энергияны айнымалы токпен жеткізу

 Электрберіліс желілерін құру қажеттілігі кең аймақтарда таралған майда қабылдағыштарға байланысты тұтынушылардан қашық орналасқан ірі электрстанцияларда негізінде электрэнергияның өндірілуімен түсіндіріледі.

         Кейбір ауданда бөлек тұтынушылар арасында электрэнергияны тарату және энергия жүйелерін байланыстыру үшін арналған желілер үлкен және қысқа қашықтықтарға жасалынуы және әртүрлі қуаттарды жеткізуге арналуы мүмкін. Қашық берілістер үшін өткізу қабілетінің, яғни барлық шектеуші нышандарды ескергенде желімен жеткізетін ең үлкен қуаттың, үлкен мағынасы бар.

         Электрберіліс желілері жауапты құрылымдардың категориясына жатады, олардың сенімді жұмысы әртүрлі өтемдеуші құрылғыларын және автоматты реттеу мен басқару қондырғыларын қолданумен қамтамасыз етіледі.

         Айнымалы токтың ауа желілері үшін олар жеткізетін максималды қуат шамамен кернеудің квадратына пропорционалды және беріліс ұзындығына кері пропорционалды деп есептеуге болады. Құрылыс құнын да кернеуге пропорционалды қабылдауға болады. Сондықтан электрэнергияны қашықтыққа жеткізудің дамуында өткізу қабілетін көтерудің негізгі құралы ретінде кернеуді көбейту тенденциясы байқалады. Бірінші электрберіліс желілерін жасағаннан бері шамамен әрбір 10...15 жылда кернеу 1,5...2 есе өсірілді. Кернеудің өсуі желілердің ұзақтығын және жеткізетін қуаттарды көбейтуге мүмкіндік берді. Өткен ғасырдың 20 – шы жылдары 100 км максималды қашықтыққа жеткізілді, 30 – шы жылдары бұл қашықтықтар 400 км дейін көбейді, ал 60 – шы жылдары желілердің ұзындығы 1000...1200 км жетті. 70 – ші жылдардың соңында ұзындығы шамамен 2500 км кернеуі 1150 кВ желі құрылды.

         Желілердің өткізу қабілетін көтеруге негізінде кернеуді көбейту есебінен жетеді, бірақ жеткізетін қуатты шектейтін параметрлердің әсерін азайтатын желілердің қиыстырмасын өзгертудің де, әртүрлі қосымша өтемдеуші құрылғыларды ендірудің де едәуір маңызы бар. Мысалы, кернеуі 330 кВ және жоғары желілерде әр фазада сымдарды өзара электрлік байланысқан бірнеше өткізгіштерге ыдыратады, мұнда желілердің параметрлері маңызды жақсарады (олардың реактивтік кедергісі азаяды); тізбектелген деп аталатын өтемдеуді қолданады желіге конденсаторларды қосу және т.б.


 

 5.2 Тұрақты токпен энергияны жеткізу

 

Тұрақты токты жеткізудің негізгі элементтері жоғарывольттік тиристорлық блоктар, олардан түрлендіруші қосалқы станциялардың сұлбалары жиналады. Тұрақты ток берілісінде электрэнергияны өндіру және тұтыну айнымалы токта жасалынады. Электрберіліс желісінде кернеуді көбейту үшін вентильдік орамдары тізбектеліп қосылған көпірлер ретіндегі әдеттегі трансформаторлардың көмегімен көтереді. Бұл желі кернеуін қосылған көпірлер санынан тәуелді көбейтуге мүмкіндік береді.

Тұрақты токты жеткізу жүйелердің біреуімен жүргізілуі мүмкін: «полюс – жер», «екі полюс – жер».

Тұрақты токтың беріліс тізбегі деп «екі полюс – жер» жүйесі, жартылай тізбек деп – «бір полюс – жер» жүйесі саналады. «Полюс – жер» сұлбасы бойынша кернеуі салыстырмалы жоғары емес тұрақты токтың қуаты аз берілістері жасалынады. «Екі полюс – жер» сұлбасы бойынша тұрақты токтың қуаты жоғары берілістері жасалынады.

Тұрақты ток берілісінде желінің жіберетін соңындағы түзетуші қосалқы станциясында айнымалы ток тұрақты токқа түрленеді, желімен тұрақты ток және тек активтік қуат беріледі. Қабылдаушы жағында тұрақты ток қайтадан айнымалыға түрленеді (инверторланады), ал қабылдаушы жүйеге айнымалы ток барады. Түзетуші және инверторлық қосалқы станциялар жұмыс кезінде айнымалы токтың торабынан қабылдаушы және жіберетін жақта реактивтік қуатты тұтынады.

Жоғары кернеудің тұрақты тогымен энергияны жібергенде айнымалы токтың желілеріне тән көп қиындықтар жойылады: орнықтылық шарттары бойынша берілетін қуатты шектеу, байланысатын энергия жүйелерінің синхронды жұмысының қажеттілігі және басқалары. Сонымен қатар беріліс соңдарында орналасқан түрлендіруші қосалқы станцияны салғанда және эксплуатациялағанда қиындықтар пайда болады. Бірқатар жағдайларда тұрақты токпен энергияны жіберу, әсіресе энергия жүйелерін байланыстыратын қашық қоректендіруші магистральдарды салғанда, едәуір техникалық – экономикалық нәтиже беруі мүмкін.

Айнымалы ток берілісімен салыстырғанда тұрақты ток берілісінің негізгі артықшылықтары:

 - желінің арзандығы және қарапайымдылығы;

-   желінің екі тәуелсіз жартылай тізбектен тұруына байланысты үлкен сенімділігі;

-   берілетін қуат шегінің орнықтылықтан емес, тек экономикалық мақсаттардан ғана тәуелділігі, өйткені берілістің орнықтылығы негізінде инвертормен анықталады және желінің ұзындығынан тәуелді емес;

-  әртүрлі жиіліктің жіберетін және қабылдайтын жүйелерінің арасындағы синхронсыз байланысты іске асыру;

-   кері сым ретінде жерді пайдалану мүмкіндігі;

-  үлкен су кеңістіктерін өткенде кабельдердің арзандауы;

-  генераторлар айналуының айнымалы жылдамдығында ГЭС – тен жұмыс атқару мүмкіндігі, бұл судың ағу шарты бойынша турбиналарды үнемді пайдалануға мүмкіндік береді;


- тәжге шығындардың азаюы.

   Тұрақты токты жіберудің кемшіліктері:

-   вентильдер мен басқа аппаратураның үлкен санынан тұратын қосалқы станциялар қиыстырмасының күрделілігі;

-   көп тізбектелген элементтердің болуына байланысты жабдықтың бөлек элементтері бойынша кернеудің бірқалыпты таралуының қиындығы;

-   беріліс жұмысында түрлендіргіш құрылғылар өндіретін жоғары гармоникалардың себебінен қабылдағыш және жіберетін тораптың кернеу және ток формасының бұрмалануы;

-  қабылдаушы тораптағы кернеудің төмендеулерінде, әсіресе симметриясыз төмендеулерде, инвертордың орнықсыздығы;

-  қуатты алу қиындықтары, өйткені тұрақты ток ажыратқышы – өте ірі және күрделі құрылым;

-  ауа желілері және аппараттардың оқшаулағыштарында тұрақты кернеудің әсерінен отыратын шаңның едәуір әсері;

-  жеке доғалардың оқшаулағыштарда пайда болуының жоғары қаупі, ұзақ эксплуатация жағдайларында олар сыртқы оқшауламаның разрядтық кернеулерін төмендетуге алып келеді;

-    әсіресе нашар ауа – райы жағдайында, ақыба токтарының көбейуі және ілінетін және тіректі оқшаулағыштардың элементтерінде тұрақты кернеудің бірқалыпты тарамауына байланысты, желілік оқшаулама жұмысының нашарлауы.

Қарастырылған электрберілістердің аталған техникалық – экономикалық көрсеткіштері әрбір электрберілістің құндылықтары мен кемшіліктерін көрсетеді. Осыған байланысты энергия жүйелерін жобалағанда, беріліс типін таңдағанда, жаңа электржабдығын ойластырып жасағанда әр электрберілістің ерекшеліктерін ескеріп, оның қолданудағы ыңғайлы аймағын объективті табу керек.

 

 6 лекция. Электрэнергетикалық жүйелерді басқару

 

        Лекцияның мазмұны: электрэнергетикалық жүйелердің режимдерін оңтайлы басқару,  электрэнергетиканы басқару жүйелері.

         Лекцияның мақсаты: электрэнергетикалық жүйелердің және ЭЭЖ басқарудың осы кездегі жүйелерінің сипаттамалы қасиеттерін зерттеу.

 

          ЭЭЖ басқару автоматты реттеуіштермен және апатқа қарсы автоматика құрылғыларымен жүргізіледі. Соңғы кезде басқару үшін ЭЕМ қолдана бастады. Басқарудың автоматты жүйелерін баптау жүйе жұмысының экономикалық тиімділігін және тұтынушыларға жіберілетін электрэнергияның жоғары сапасын қамтамасыз ету үшін алдын ала таңдалған сипаттамаларына сәйкес синтез әдістерімен жасалынады.

          Пайдаланылатын автоматты құрылғылардың түрін таңдау, олардың тиімділігін және энергия жүйелері жұмысының сенімділігіне әсерін бағалау оңтайлау есептерінің негізінде жасалынады.

          ЭЭЖ режимдерін басқару оңтайлы болу керек, яғни қарама – қарсы нышандары әсерінің жағдайларында ең жақсы техникалық экономикалық нәтиже беретін. Мысалы, желімен жеткізетін қуатты көбейту мақсатымен орнықтылықтың бұзылу себебінен осы желінің апатты ағытылуын тудыруға болады. Бір тенденция жеткізетін қуатты көбейткенде алатын оң нәтиже, екіншісенімділіктің төмендеуімен және желімен электрэнергияны жеткізудің толық тоқтау мүмкіндігімен туындаған теріс салдарларында, мұнда жеткізудің тоқтау ықтималдығы берілетін қуаттың көбейуімен өседі.


          Басқару нысаны ретіндегі электрэнергетикалық жүйе үшін оның көпсанды элементтері арасындағы күрделі тура және кері байланыстардың үлкен санының болуы және жұмыс жасау процесінің мақсатты бағытталуы тән.

           Электрэнергетикалық жүйелер кибернетикалық типті үлкен жүйелердің категориясына жатады. Оларды басқару энергетиканың басқа салалармен, биосферамен және әлеуметтік нышандармен күрделі өзара байланыстарын ескеріп құрылу керек.

          Электрэнергетиканы басқару жүйесінде ЭЕМ маңызды мәні бар. Олдардың ролі энергетикалық жүйелердің техникалық дамуына байланысты өседі. Мұнда адамның функциялары жауапты және творчествалық болады.

          Электрэнергетикалық жүйелерде барлық алынған энергия лезде тұтынылады. Электрлік жүктеменің нақты тербелістері генератор роторы айналуының кинетикалық энергиясы өзгеруінің есебінен өтемделеді. Егер жүктеме өссе, онда электр генераторы өндіретін қуат көбейеді. Мұнда ротор тежеледі және оның кинетикалық энергиясы азаяды. Жүктеменің төмендеуі генератор роторы кинетикалық энергиясының көбейуіне алып келеді.

          Ротор генератора находится на одном валу с турбиной. Уменьшение частоты вращения турбины приведет в действие автоматические устройства, которые увеличат подачу пара или воды в турбину с тем, чтобы сохранить неизменной частоту вращения ротора генератора. Это в свою очередь вызовет уменьшение давления в паропроводах и парогенераторах ТЭС и приведет в действие систему автоматического регулирования режима работы парогенераторов. В результате увеличится подача воды, топлива и воздуха, необходимого для горения топлива.

          Таким образом, электрическая станция хотя и не располагает запасами готовой продукции – электрической энергии, однако имеет запасы энергии на промежуточных стадиях преобразования химической энергии топлива в электрическую: механической энергии вращения турбины и генератора, а также внутренней энергии пара.

         Энергетической системе свойственна динамичность. Она проявляется в быстрых реакциях на любые изменения состояния системы. Появление возмущений в системе обусловлено многими причинами: случайными атмосферными воздействиями, короткими замыканиями, изменениями нагрузки, отключениями отдельных элементов (линий, трансформаторов, генераторов) и т.д. Под влиянием больших и малых возмущений происходит изменение состояния системы. Колеблются напряжение и частота, меняются потоки мощности по соединительным линиям и т.д.

          Современные энергетические системы обладают высокой степенью организованности благодаря насыщенности автоматическими управляющими элементами. В результате работ устройств управления происходит  упорядочение системы, приведение ее к большей организованности. Процесс взаимодействия управляющей и управляемой систем состоит из нескольких последовательных этапов: