Файл: Практикум для выполнения контрольной работы для курсантов специальности.doc
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 08.11.2023
Просмотров: 112
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Свойства материалов
Механическими свойствами материалов являются:
-
Прочность — это способность материала сопротивляться разрушающему воздействию внешних сил. -
Твердость — это способность материала сопротивляться внедрению в него другого, более твердого тела под действием нагрузки. -
Вязкостью называется свойство материала сопротивляться разрушению под действием динамических нагрузок. -
Упругость — это свойство материалов восстанавливать свои размеры и форму после прекращения действия нагрузки. -
Пластичностью называется способность материалов изменять свои размеры и форму под действием внешних сил, не разрушаясь при этом. -
Хрупкость — это свойство материалов разрушаться под действием внешних сил без остаточных деформаций.
Технологическими свойствами материалов являются:
-
Литейные свойства металлов и сплавов характеризуют их способность образовывать отливки без трещин, раковин и других дефектов. -
Деформируемость (ковкость) − способность металла обрабатываться давлением при ковке, штамповке, прокатке, т. е. принимать нужную форму под действием удара или давления в нагретом или холодном состоянии без признаков разрушения. -
Свариваемостью называют способность металла образовывать прочное сварное соединение. Хорошей свариваемостью обладает низкоуглеродистая сталь, труднее сварить чугун и цветные металлы. -
Обрабатываемостью резанием называют способность металла поддаваться обработке резанием. Металлы и сплавы, имеющие высокую твердость, плохо поддаются обработке резанием. Также плохо обрабатываются вязкие металлы с низкой твердостью.
Технологические свойства определяются при технологических испытаниях (пробах), которые дают качественную оценку пригодности металлов и сплавов к различным способам обработки.
Конструкционными называют материалы, предназначенные для изготовления деталей машин, приборов, инженерных конструкций, подвергающиеся механическим нагрузкам. Делали машин и приборов характеризуются большим разнообразием форм, размеров, условий эксплуатации. Они работают при статических, циклических и ударных нагрузках, при низких и высоких температурах, в контакте с различными средами. Эти факторы определяют требования к конструкционным материалам, основные из которых эксплуатационные, технологические и экономические.
Эксплуатационные требования имеют первостепенное значение. Для того, чтобы обеспечить работоспособность конкретных машин и приборов, конструкционный материал должен иметь высокую конструкционную прочность.
Конструкционной прочностью называется комплекс механических свойств, обеспечивающих надежную и длительную работу материала в условиях эксплуатации.
Механические свойства, определяющие конструкционную прочность и выбор конструкционного материала, рассмотрены ниже. Требуемые характеристики механических свойств материала для конкретного изделия зависят не только от силовых факторов, но и воздействия на него рабочей среды и температуры.
Среда - жидкая, газообразная, ионизированная, радиационная, в которой работает материал, оказывает существенное и преимущественно отрицательное влияние на его механические свойству, снижая работоспособность деталей. В частности, рабочая среда может вызывать повреждение поверхности вследствие коррозионного растрескивания, окисления и образования окалины, изменение химического состава поверхностного слоя в результате насыщения нежелательными элементами. Кроме того, возможны разбухание и местное разрушение материала в результате ионизационного и радиационного облучения. Для того чтобы противостоять рабочей среде, материал должен обладать не только механическими, но и определенными физико-химическими свойствами: стойкостью к электрохимической коррозии, жаростойкостью, радиационной стойкостью, влагостойкостью, способностью работать в условиях вакуума и др.
В некоторых случаях важно также требование определенных магнитных, электрических, тепловых свойств, высокой стабильности размеров деталей (особенно высокоточных деталей приборов).
Технологические требования направлены на обеспечение наименьшей трудоемкости изготовления деталей и конструкций. Технологичность материала характеризуют возможные методы его обработки. Она оценивается обрабатываемостью резанием, давлением, свариваемостью, способностью к литью, а также прокаливаемостью, склонностью к деформации и короблению при термической обработке. Технологичность материала имеет важное значение, так как от нее зависят производительность и качество изготовления деталей.
Экономические требования сводятся к тому, чтобы материал имел невысокую стоимость и был доступным. Стали и сплавы по возможности должны содержать минимальное количество легирующих элементов. Использование материалов, содержащих легирующие элементы, должно быть обосновано повышением эксплуатационных свойств деталей. Экономические требования, так же как и технологические, приобретают особое значение при массовом масштабе производства.
Таким образом, качественный конструкционный материал должен удовлетворять комплексу требований.
Конструкционная прочность - комплексная характеристика, включающая сочетание критериев прочности, надежности и долговечности.
Критерии прочности материала выбирают в зависимости от условий его работы. Критериями прочности при статистических нагрузках являются временное сопротивление или предел текучести, характеризующие сопротивление материала пластической деформации. Поскольку при работе большинства деталей пластическая деформация недопустима, то их несущую способность, как правило, определяют по пределу текучести. Для приближенной оценки статической прочности используют твердость НВ.
Большинство деталей машин испытывает длительные циклические нагрузки. Критерий их прочности - предел выносливости. По величине выбранных критериев прочности рассчитывают допустимые рабочие напряжения. При этом, чем больше прочность материала, тем больше допустимые рабочие напряжения и тем самым меньше размеры и масса детали. Однако повышение уровня прочности материала и, как следствие, рабочих напряжений сопровождается увеличением упругих деформаций.
Для ограничения упругой деформации материал должен обладать высоким модулем упругости (или сдвига), являющимся критерием его жесткости. Именно критерии жесткости, а не прочности обусловливают размеры станин станков, корпусов редукторов и других деталей, от которых требуется сохранение точных размеров и формы.
Возможно и противоположное требование. Для пружин, мембран и других чувствительных упругих элементов приборов, наоборот, важно обеспечить большие упругие перемещения. Для материалов, используемых в авиационной и ракетной технике, важное значение имеет эффективность материала по массе.
Таким образом, в качестве критериев конструкционной прочности выбирают те характеристики, которые наиболее полно отражают прочность в условиях эксплуатации.
Надежность - свойство материала противостоять хрупкому разрушению. Хрупкое разрушение вызывает внезапный отказ деталей в условиях эксплуатации. Оно считается наиболее опасным из-за протекания с большой скоростью при напряжениях ниже расчетных, а также возможных аварийных последствий.
Для предупреждения хрупкого разрушения конструкционные материалы должны обладать достаточной пластичностью и ударной вязкостью. Однако эти параметры надежности, определенные на небольших лабораторных образцах без учета
условий эксплуатации конкретной детали, достаточно показательны лишь для мягких малопрочных материалов. Необходимо также учитывать то, что в условиях эксплуатации действуют факторы, дополнительно снижающие их пластичность, вязкость и увеличивающие опасность хрупкого разрушения. К таким факторам относятся концентраторы напряжений (надрезы), понижение температуры, динамические нагрузки, увеличение размеров деталей.
Для того чтобы избежать внезапных поломок в условиях эксплуатации, необходимо учитывать трещиностойкость материала. Трещиностойкость - группа параметров надежности, характеризующих способность материала тормозить развитие трещины.
Количественная оценка трещиностойкости основывается на линейной механике разрушения. В соответствии с ней очагами разрушения высокопрочных материалов служат небольшие трещины эксплуатационного или технологического происхождения. Трещины являются острыми концентраторами напряжений, местные (локальные) напряжения, в вершине которых могут во много раз превышать средние расчетные напряжения.
Долговечность - свойство материала сопротивляться развитию постепенного разрушения, обеспечивая работоспособность деталей в течение заданного времени. Причины потери работоспособности разнообразны: развитие процессов усталости, изнашивания, ползучести, коррозии, радиационного разбухания и пр. Эти процессы вызывают постепенное накопление необратимых повреждений в материале и его разрушение. Обеспечение долговечности материала означает уменьшение до требуемых значений скорости его разрушения.
Для большинства деталей машин долговечность определяется сопротивлением материала усталостным разрушениям (циклической долговечностью) или сопротивлением изнашиванию. Поэтому эти причины потери работоспособности материала требуют подробного рассмотрения.
Циклическая долговечность характеризует работоспособность материала в условиях многократно повторяющихся циклов напряжений. Цикл напряжения - совокупность изменения напряжения между двумя его предельными значениями σmax и σmin в течение периода Т.
Процессы постепенного накопления повреждений в материале под действием циклических нагрузок, приводящие к изменению его свойств, образованию трещин, их развитию и разрушению, называют усталостью, а свойство противостоять усталостивыносливостью.
Износостойкость - свойство материала оказывать в определенных условиях трения сопротивление изнашиванию. Изнашивание - процесс постепенного разрушения поверхностных слоев материала путем отделения его частиц под влиянием сил трения. Результат изнашивания называют износом. Его определяют по изменению размеров, уменьшению объема или массы. Износостойкость материала оценивают величиной, обратной скорости изнашивания.
Перечень конструкционных материалов, применяемых в машино и приборостроении, велик, и классифицировать их можно по разным признакам. Большинство из них, такие, как стали, чугуны, сплавы на основе меди и легких металлов, являются универсальными. Они обладают многочисленными достоинствами и используются в различных деталях и конструкциях.
Наряду с универсальными применяют конструкционные материалы определенного функционального назначения: жаропрочные, материалы с высокими упругими свойствами, износостойкие, коррозионно и жаростойкие.
Классификация подразделяет конструкционные материалы по свойствам, определяющим выбор материала для конкретных деталей конструкций. Каждая группа материалов оценивается соответствующими критериями, обеспечивающими работоспособность в эксплуатации. Универсальные материалы рассматриваются в нескольких группах, если возможность применения их определяется различными критериями. В соответствии с выбранным принципом классификации все конструкционные материалы подразделяют на следующие группы:
-
Материалы, обеспечивающие жесткость, статическую и циклическую прочность -
Материалы с особыми технологическими свойствами -
Износостойкие материалы -
Материалы с высокими упругими свойствами -
Материалы с малой плотностью -
Материалы с высокой удельной прочностью -
Материалы, устойчивые к воздействию температуры и рабочей среды
Основы термической обработки металлов и сплавов
Термическая обработка в современной технике является одним из важнейших технологических процессов и применяется во всех отраслях промышленности, занятых обработкой металлических сплавов, так как улучшение и получение новых свойств в результате термообработки позволяет использовать сплавы более простых составов, а также уменьшить габариты и вес деталей, что дает огромную экономию металла. Основы теории термической обработки подробно описаны в указанной литературе.