ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.11.2023
Просмотров: 27
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
, которые окисляются в реакциях гликолиза и цикле Кребса.
В виду дефицита кислорода при мышечной деятельности отмечается накопление молочной кислоты и в ряде случаев в большом количестве. Часть ее используется для синтеза гликогена в печенив мышечной ткани. Однако ее неполная утилизация является одной из причин развития утомления.
БИОХИМИЧЕСКИЕ ИЗМЕНЕНИЯ ПРИ УТОМЛЕНИИ.
Отмечается изменение баланса богатых энергией фосфорных соединений вследствие преобладания распада АТФ над ее ресинтезом. Отношение АТФ к АДФ уменьшается в том числе и в нервной ткани, что приводит к снижению ее спецефической функциональной активности и развитии в ней защитного охранительного торможения, направленное на усиление
процессов восстановления, в частности ресинтеза АТФ.
Утомление сопровождается так же уменьшением содержания АТФ и креатинфосфата, а так же АТФ – азной активности миозина, ферментов аэробного окисления и особенно дыхания и фосфорилирования.
Происходит накопление молочной кислоты и снижение энергетических запасов мышци (в первую очередь гликогена)
Биохимические изменения при патологии в скелетных мышцах.
Общим для большинства заболеваний мышц (прогрессирующая мышечной дистрофия, атрофия, полимиозит, поражения при авитоминозе) является: резкое снижение содержания монофибриллярных белков, возрастает содержание белков стромы и некоторых саркоплазматических белков.
Наблюдается снижение содержания АТФ и креатинфосфата, а так же АТФ – азной активности миозина.
Уменьшение имидозол - содержащих дипептидов (карнозина и ансерина) вследствие усиления их распада.
Отмечается снижение фосфотидилхолина, фосфатидилэтаноламина и повышение сфингомиелина и лизофосфатидилхолина.
Структура и функция миокарда. Миокард желудочков состоит из взаимосвязанных волокон длинной от30 до 60, шириной от 10 до 20 мк. Хотя волокна сердечной мышцы функционально идентичны волокнам скелетны мышц, они меньше последних. И те и другие состоят из нескольких тысяч поперечно исчерченных нитей, или пучков ( миофибриллы), которые простираются на всю длину волокон. Миофибриллы состоят из тысячи саркомеров, образованных сократительными белками актином и миозином, организованными в виде микрофиламентов. В мышци сердца на саркомеры приходится около 50% массы сердечных клеток ( почти 90% в скелетной мышце). Если учесть роль, которую играет сердце, то можно понять, почему 25 – 30% сердечной клетки приходится на митохондрии. Они расположены вблизи от сократительных нитей, что облегчает перенос АТФ от места его образования в митохондриях к месту потребления во время сокращения. Энергетический обмен в сердечной мышце протекает почти в исключительно аэробных условиях, анаэробный путь реализуется лишь частично при экстремальной кислородной недостаточности.
Регуляция метаболизма сердечной мышци в покое и при нагрузке.
Сердечные мышцы, как и красная скелетная обладает высокой активностью реакцией цитратного цикла и окисления жирных кислот и малой активностью гликолитического пути. В сердечно мышце содержатся большие количества креатинкиназы, которая играет решающую роль в переносе АТФ от места ее образования в митохондриях к миофибриллам; 45% фермента локализовано на внутренней стороне наружной мембраны митохондрий. Встречаются все три формы изоферментов креатинкиназы: 40% общей активности приходится на ММ – форму, 50% которой связано с миофибриллами, МВ и ВВ – изоферменты находятся в растворимой форме и при повреждении клеток выходят наружу. Сердечная мышца, в отличиие от скелетной, использует для получения энергии наряду с глюкозой большее количество жирных кислот, а так же лактати кетоновые тела. Скелетная мышца свои энергетические потребности удовлетворяет в состоянии покоя на 95% за счет окисления глюкозы, а оставшуюся часть – за счет окисления жирных кислот. Всердечной мышцк при интенсивной нагрузке растет доля окисления лактата, в то время как доля остальных субстратов снижается. Скелетная мышца и в этих условиях получает энергию за счет глюкозы и жирных кислот, хотя доля окисляемых жирных кислот значительно увеличивается.
АТФ сердечной мышци являяется непосредственным энергетическим субстратом, обеспечивающем сокращения. Между синтезом АТФ и потреблением сердечной мышцей кислорода существует тесна корреляционная связь: увеличение скорости потребления кислорода сопровождается увеличением скорости синтеза АТФ. Рефосфорилирование образующегося на миофибрилле АДФ происходит здесь же креатинфосфатом с помощью креатинкиназы. Рефосфорилирование креатина протекает с помощью АТФ, образующейся в митохондриях.
Значительное влияние на метаболизм сердечной мышци цАМФ как вторичный передатчик гормонального влияния катехоламинов. Он так же непосредственно влияет на механизм сокращения через активировани протеинкиназ с перераспределением Cа2+ между фибриллами и саркоплазматическим ретикуломом. Путем активирования фосфорилазы из гликогена освобождается глюкоза, что особенно важно для поддержания пула субстратов при инфаркте миокарда
Влияние гипоксии на обмен веществ в сердечной мышце.
В аанэробных условиях выявлено снижение сократимости миокарда уже через 5 минут от начала анаэробиоза. Отмеченный рост активности фосфофруктокиназы максимально индуцировал глмколиз, что приводило к накоплению молочной кислоты ( накопление вместо расходования!). Активацивация фосфорилазы увеличивала расход гликогена как субстрата энергетики и его запасы уже через 7 минут составили около 1/3 от исходного уровня. Однако, как выяснилось, при полной аноксии гликолиз может покрыть только 15 – 20% потребности сердца в энергии. Результат этого – снижение АТФ на 50%, а креатинфосфата на 1/3 уже через 5 минут от начала аноксии. Морфологический анализ миокардиоцитов показал набухание митохондрий, расширение крист до полного разрыва митохондриальной мембраны до полного выхода всего содержимого.
В условиях клиники полная ишемия сердечной мышцы наблюдается при тромбозе и эмболии коронарного сосуда. Результат – инфаркт миокарда. Нарушение кровоснабжения приводит к кислородной недостаточности и к прекращению доставки окисляемых субстратов. Создаются условия для накопления молочной кислоты, посколоку она не утилизируется сердечной мышцей. В первые минуты после закупорки сосудов быстро интенсифицируется гликолиз, образуется молочная кислота,( следствие активации гликогенолиза под влиянием катехоламинов). Взоне инфаркта примерно через 30 минут от наступления ишемии после наступления ацидоза гликолиз постепенно нормализуется. Переключение гликолиза на анаэробный сопровождается уменьшением синтеза АТФ и фосфокреатина. Ишемизированная мышца теряет способность к сокращению из – за дефицита энергии. Снижение сократимости связано с выходом Са2+ из мест их связывания из – за повышенного содержания молочной кислоты и ацидоза. Вне зоны инфаркта так же уменьшается количество АТФ, что приводит к функциональному снижению способности сердца. Сниженное содержание АТФ в сердечной мышце сохраняется более 10 дней от начала инфаркта.
До 2 суток от начала инфаркта наблюдается снижение белков и нуклеиновых кислот в миокарде. Период рубцевания сопровождается активацией синтеза ДНК, инактивацией гликолитических ферментов с одновременной активацией глюкозо – 6 фосфатдегидрогеназы и глюкозо – 6 фосфоглюконатдегидрогеназы, возрастает активность окислительной ветви пентозо – фосфатного пути и образования восстановленого Н АДФ (источник водорода для синтетических реакций). В ткани подвергшейся инфаркту, возвращение метаболизма к нормальному протекает очень медленно.
Биохимические аспекты диагностики инфаркта миокарда.
Ферментами, исследование которых имеет наибольшую диагностическуюценность при инфаркте миокарда, являются АСТ, ЛДГ и КК. Выбор исследования зависит от времени после возникновения инфаркта миокарда.
В течение по меньшей мере 4 ч после инфаркта содержание всех ферментов может быть в норме. В первые 4 ч после того момента, когда больной ощутил боль в груди, нет смысла брать кровь для исследования ферментов.
Изменение активности ферментов плазмы крови при инфаркте миокарда.
В виду дефицита кислорода при мышечной деятельности отмечается накопление молочной кислоты и в ряде случаев в большом количестве. Часть ее используется для синтеза гликогена в печенив мышечной ткани. Однако ее неполная утилизация является одной из причин развития утомления.
БИОХИМИЧЕСКИЕ ИЗМЕНЕНИЯ ПРИ УТОМЛЕНИИ.
Отмечается изменение баланса богатых энергией фосфорных соединений вследствие преобладания распада АТФ над ее ресинтезом. Отношение АТФ к АДФ уменьшается в том числе и в нервной ткани, что приводит к снижению ее спецефической функциональной активности и развитии в ней защитного охранительного торможения, направленное на усиление
процессов восстановления, в частности ресинтеза АТФ.
Утомление сопровождается так же уменьшением содержания АТФ и креатинфосфата, а так же АТФ – азной активности миозина, ферментов аэробного окисления и особенно дыхания и фосфорилирования.
Происходит накопление молочной кислоты и снижение энергетических запасов мышци (в первую очередь гликогена)
Биохимические изменения при патологии в скелетных мышцах.
Общим для большинства заболеваний мышц (прогрессирующая мышечной дистрофия, атрофия, полимиозит, поражения при авитоминозе) является: резкое снижение содержания монофибриллярных белков, возрастает содержание белков стромы и некоторых саркоплазматических белков.
Наблюдается снижение содержания АТФ и креатинфосфата, а так же АТФ – азной активности миозина.
Уменьшение имидозол - содержащих дипептидов (карнозина и ансерина) вследствие усиления их распада.
Отмечается снижение фосфотидилхолина, фосфатидилэтаноламина и повышение сфингомиелина и лизофосфатидилхолина.
Структура и функция миокарда. Миокард желудочков состоит из взаимосвязанных волокон длинной от30 до 60, шириной от 10 до 20 мк. Хотя волокна сердечной мышцы функционально идентичны волокнам скелетны мышц, они меньше последних. И те и другие состоят из нескольких тысяч поперечно исчерченных нитей, или пучков ( миофибриллы), которые простираются на всю длину волокон. Миофибриллы состоят из тысячи саркомеров, образованных сократительными белками актином и миозином, организованными в виде микрофиламентов. В мышци сердца на саркомеры приходится около 50% массы сердечных клеток ( почти 90% в скелетной мышце). Если учесть роль, которую играет сердце, то можно понять, почему 25 – 30% сердечной клетки приходится на митохондрии. Они расположены вблизи от сократительных нитей, что облегчает перенос АТФ от места его образования в митохондриях к месту потребления во время сокращения. Энергетический обмен в сердечной мышце протекает почти в исключительно аэробных условиях, анаэробный путь реализуется лишь частично при экстремальной кислородной недостаточности.
Регуляция метаболизма сердечной мышци в покое и при нагрузке.
Сердечные мышцы, как и красная скелетная обладает высокой активностью реакцией цитратного цикла и окисления жирных кислот и малой активностью гликолитического пути. В сердечно мышце содержатся большие количества креатинкиназы, которая играет решающую роль в переносе АТФ от места ее образования в митохондриях к миофибриллам; 45% фермента локализовано на внутренней стороне наружной мембраны митохондрий. Встречаются все три формы изоферментов креатинкиназы: 40% общей активности приходится на ММ – форму, 50% которой связано с миофибриллами, МВ и ВВ – изоферменты находятся в растворимой форме и при повреждении клеток выходят наружу. Сердечная мышца, в отличиие от скелетной, использует для получения энергии наряду с глюкозой большее количество жирных кислот, а так же лактати кетоновые тела. Скелетная мышца свои энергетические потребности удовлетворяет в состоянии покоя на 95% за счет окисления глюкозы, а оставшуюся часть – за счет окисления жирных кислот. Всердечной мышцк при интенсивной нагрузке растет доля окисления лактата, в то время как доля остальных субстратов снижается. Скелетная мышца и в этих условиях получает энергию за счет глюкозы и жирных кислот, хотя доля окисляемых жирных кислот значительно увеличивается.
АТФ сердечной мышци являяется непосредственным энергетическим субстратом, обеспечивающем сокращения. Между синтезом АТФ и потреблением сердечной мышцей кислорода существует тесна корреляционная связь: увеличение скорости потребления кислорода сопровождается увеличением скорости синтеза АТФ. Рефосфорилирование образующегося на миофибрилле АДФ происходит здесь же креатинфосфатом с помощью креатинкиназы. Рефосфорилирование креатина протекает с помощью АТФ, образующейся в митохондриях.
Значительное влияние на метаболизм сердечной мышци цАМФ как вторичный передатчик гормонального влияния катехоламинов. Он так же непосредственно влияет на механизм сокращения через активировани протеинкиназ с перераспределением Cа2+ между фибриллами и саркоплазматическим ретикуломом. Путем активирования фосфорилазы из гликогена освобождается глюкоза, что особенно важно для поддержания пула субстратов при инфаркте миокарда
Влияние гипоксии на обмен веществ в сердечной мышце.
В аанэробных условиях выявлено снижение сократимости миокарда уже через 5 минут от начала анаэробиоза. Отмеченный рост активности фосфофруктокиназы максимально индуцировал глмколиз, что приводило к накоплению молочной кислоты ( накопление вместо расходования!). Активацивация фосфорилазы увеличивала расход гликогена как субстрата энергетики и его запасы уже через 7 минут составили около 1/3 от исходного уровня. Однако, как выяснилось, при полной аноксии гликолиз может покрыть только 15 – 20% потребности сердца в энергии. Результат этого – снижение АТФ на 50%, а креатинфосфата на 1/3 уже через 5 минут от начала аноксии. Морфологический анализ миокардиоцитов показал набухание митохондрий, расширение крист до полного разрыва митохондриальной мембраны до полного выхода всего содержимого.
В условиях клиники полная ишемия сердечной мышцы наблюдается при тромбозе и эмболии коронарного сосуда. Результат – инфаркт миокарда. Нарушение кровоснабжения приводит к кислородной недостаточности и к прекращению доставки окисляемых субстратов. Создаются условия для накопления молочной кислоты, посколоку она не утилизируется сердечной мышцей. В первые минуты после закупорки сосудов быстро интенсифицируется гликолиз, образуется молочная кислота,( следствие активации гликогенолиза под влиянием катехоламинов). Взоне инфаркта примерно через 30 минут от наступления ишемии после наступления ацидоза гликолиз постепенно нормализуется. Переключение гликолиза на анаэробный сопровождается уменьшением синтеза АТФ и фосфокреатина. Ишемизированная мышца теряет способность к сокращению из – за дефицита энергии. Снижение сократимости связано с выходом Са2+ из мест их связывания из – за повышенного содержания молочной кислоты и ацидоза. Вне зоны инфаркта так же уменьшается количество АТФ, что приводит к функциональному снижению способности сердца. Сниженное содержание АТФ в сердечной мышце сохраняется более 10 дней от начала инфаркта.
До 2 суток от начала инфаркта наблюдается снижение белков и нуклеиновых кислот в миокарде. Период рубцевания сопровождается активацией синтеза ДНК, инактивацией гликолитических ферментов с одновременной активацией глюкозо – 6 фосфатдегидрогеназы и глюкозо – 6 фосфоглюконатдегидрогеназы, возрастает активность окислительной ветви пентозо – фосфатного пути и образования восстановленого Н АДФ (источник водорода для синтетических реакций). В ткани подвергшейся инфаркту, возвращение метаболизма к нормальному протекает очень медленно.
Биохимические аспекты диагностики инфаркта миокарда.
Ферментами, исследование которых имеет наибольшую диагностическуюценность при инфаркте миокарда, являются АСТ, ЛДГ и КК. Выбор исследования зависит от времени после возникновения инфаркта миокарда.
В течение по меньшей мере 4 ч после инфаркта содержание всех ферментов может быть в норме. В первые 4 ч после того момента, когда больной ощутил боль в груди, нет смысла брать кровь для исследования ферментов.
Изменение активности ферментов плазмы крови при инфаркте миокарда.
Фермент | Повышение Активности (Час) | Мах Активность (час) | Активность В норме (сутки) |
Суммарная КК | 4 - 8 | 24 - 48 | 3 – 5 |
АСТ | 6 - 8 | 24 - 48 | 4 – 6 |
ЛДГ | 12 – 24 | 48 - 72 | 10 - 12 |