Добавлен: 09.11.2023
Просмотров: 131
Скачиваний: 12
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Титульный
Содержание
1. Уравнение Бернулли для струйки идеальной жидкости
2. Геометрическая интерпретация уравнения Бернулли
3. Энергетическая интерпретация уравнения Бернулли
4. Уравнение Бернулли для потока реальной жидкости
Введение
27 июля (6 августа) 1667 года родился выдающийся швейцарский математик Иоганн Бернулли – один из ярчайших представителей династии математиков Бернулли. Более ста лет члены семьи Бернулли заведовали кафедрой математики Базельского университета, а работали в университете на разных должностях и того дольше – около 250 лет. Конечно, было вполне ожидамо, что в такой одаренной семье родится будущий выдающийся ученый. Однако заслуги Иоганна Бернулли на ниве точных наук столь велики, что он прочно и на долгие века вписал свое имя в историю.
Основные достижения Иоганна относятся к математическому анализу, теории дифференциальных уравнений и аналитической механике. Работы Бернулли легли в основу первого в мире учебника математического анализа, выпущенного его учеником Гийомом Лопиталем: «Анализ бесконечно малых для исследования кривых линий» (1696 г.). Иоганн Бернулли впервые в истории науки поставил и решил вариационную задачу, заложил основы вариационного исчисления. Он же первым открыл простейшую форму закона больших чисел, вывел формулу для разложения функции в степенные ряды, дал первое систематическое изложение дифференциального и интегрального исчислений.
Бернулли запомнился и своими работами в области механики. Кроме того, он считается одним из основоположников математической физики. Многогранный ученый не обошел стороной и медицину: после окончания университета Бернулли активно, и весьма успешно, занимался врачебной практикой. Швейцарский математик воспитал целую плеяду выдающихся ученых: Леонард Эйлер, Даниил Бернулли, Николас де Бегелин и другие.
1. Уравнение Бернулли для струйки идеальной жидкости
Рассмотрим элементарную струйку идеальной жидкости при установившемся движении, в которой выделим два сечения 1-1 и 2-2. Площади живых сечений потока обозначим dω1 и dω2. Положение центров тяжести этих сечений относительно произвольно расположенной линии сравнения (нулевой линии)
0 - 0характеризуется величинами z1 и z2. Давления и скорости жидкости в этих сечениях имеют значения P1, P2 и u1,u2 соответственно.
Будем считать, что движение струйки жидкости происходит только под действием силы давления (внутреннее трение в жидкости отсутствует), а давление обладает свойствами статического и действует по нормали внутрь рассматриваемого объёма.
За малый промежуток времени dt частицы жидкости из 1-1 переместятся в 1'-1' на расстояние, равноеu1dt, а частицы из 2-2 в2' - 2'на расстояние u2dt.
Согласно теореме кинетической энергии приращение энергии тела (в данном случае выделенного объёма жидкости) равно сумме работ всех действующих на него сил.
Работу в данном случае производят силы давления, действующие в рассматриваемых живых сечениях струйки 1-1 и 2-2, а также силы тяжести. Тогда работа сил давления в сечении 1-1 будет положительна, т.к. направление силы совпадает с направлением скорости струйки. Она будет равна произведению силыp1dω1 на путь u1dt:
.
Работа сил давления в сечении 2-2 будет отрицательной, т.к. направление силы противоположно направлению скорости. Её значение
.
Полная работа, выполненная силами давления, примет вид:
.
Работа сил тяжести равна изменению потенциальной энергии положения выделенного объёма жидкости при перемещении из сечения 1-1 в сечение 2-2. С учётом условия неразрывности потока и несжимаемости жидкости выделенные элементарные объёмы будут равны и, следовательно, будут равны их веса dG:
.
При перетекании от сечения 1-1 в сечение 2-2 центр тяжести выделенного объёма переместится на разность высот (z1 – z
2) и работа, произведённая силами тяжести, составит:
.
Проанализируем теперь изменение кинетической энергии рассматриваемого объёма элементарной струйки жидкости.
Приращение кинетической энергии выделенного объёма за dt равно разности его кинетических энергий в сечениях 1-1 и 2-2. Это приращение составит
.
Приравнивая приращение кинетической энергии сумме работ сил тяжести и сил давления, придём к виду:
.
Разделив обе части на вес dG, т.е. приведя уравнение к единичному весу, получим
.
После сокращения и преобразований придём к искомому виду
Если учесть, что сечения 1-1 и 2-2 выбраны произвольно, можно прийти к выводу, что сумма приведённых выше величин описывающих движение жидкости под действием сил давления и сил тяжести есть величина постоянная для элементарной струйки, т.е.
Таким образом, снова получено то же (ранее полученное интегрированием уравнений Эйлера) уравнение Бернулли для элементарной струйки невязкой жидкости при установившемся движении под действием сил тяжести.
2. Геометрическая интерпретация уравнения Бернулли
Положение любой частицы жидкости относительно некоторой произвольной линии нулевого уровня 0-0 определяется вертикальной координатой Z. Для реальных гидравлических систем это может быть уровень, ниже которого жидкость из данной гидросистемы вытечь не может. Например, уровень пола цеха для станка или уровень подвала дома для домашнего водопровода.
-
Как и в гидростатике, величину Z называют нивелирной высотой. -
Второе слагаемое - носит название пьезометрическая высота. Эта величина соответствует высоте, на которую поднимется жидкость в пьезометре, если его установить в рассматриваемом сечении, под действием давления P. -
Сумма первых двух членов уравнения гидростатический напор. -
Третье слагаемое в уравнения Бернулли называется скоростной высотой или скоростным напором. Данную величину можно представить как высоту, на которую поднимется жидкость, начавшая двигаться вертикально со скорость u при отсутствии сопротивления движению. -
Сумму всех трёх членов (высот) называют гидродинамическим или полным напором и, как уже было сказано, обозначают буквой Н.
Все слагаемые уравнения Бернулли имеют размерность длины и их можно изобразить графически.
Значения - нивелирную, пьезометрическую и скоростную высоты можно определить для каждого сечения элементарной струйки жидкости. Геометрическое место точек, высоты которых равны , называется пьезометрической линией. Если к этим высотам добавить скоростные высоты, равные , то получится другая линия, которая называется гидродинамической или напорной линией.
Из уравнения Бернулли для струйки невязкой жидкости (и графика) следует, что гидродинамический напор по длине струйки постоянен.
3. Энергетическая интерпретация уравнения Бернулли
Выше было получено уравнение Бернулли с использованием энергетических характеристик жидкости. Суммарной энергетической характеристикой жидкости является её гидродинамический напор.
С физической точки зрения это отношение величины механической энергии к величине веса жидкости, которая этой энергией обладает. Таким образом, гидродинамический напор нужно понимать как энергию единицы веса жидкости. И для идеальной жидкости эта величина постоянна по длине. Таким образом, физический смысл уравнения Бернулли это закон сохранения энергии для движущейся жидкости.
Здесь с энергетической точки зрения (в единицах энергии, Дж/кг) gz — удельная потенциальная энергия положения; Р/ — удельная потенциальная энергия давления; gz + Р/ — удельная потенциальная энергия; u2/2 — удельная кинетическая энергия; и — скорость элементарной струйки идеальной жидкости.
Умножив все члены уравнения на удельный вес жидкости , получим
z- весовое давление, Па; P — гидродинамическое давление, Па;
и2 /2 — динамическое давление Па; H — полное давление, Па
4. Уравнение Бернулли для потока реальной жидкости
В реальных потоках жидкости присутствуют силы вязкого трения. В результате слои жидкости трутся друг об друга в процессе движения. На это трение затрачивается часть энергии потока. По этой причине в процессе движения неизбежны потери энергии. Эта энергия, как и при любом трении, преобразуется в тепловую энергию. Из-за этих потерь энергия потока жидкости по длине потока, и в его направлении постоянно уменьшается. Т.е. напор потока Hпотока в направлении движения потока становится меньше. Если рассмотреть два соседних сечения 1-1 и 2-2, то потери гидродинамического напора Δh составят:
,
где H1-1- напор в первом сечении потока жидкости,
H2-2 - напор во втором сечении потока,
∆h - потерянный напор - энергия, потерянная каждой единицей веса движущейся жидкости на преодоление сопротивлений на пути потока от сечения 1-1 до сечения 2-2.
С учётом потерь энергии уравнение Бернулли для потока реальной жидкости будет выглядеть
Индексами 1 и 2 обозначены характеристики потока в сечениях 1-1 и 2-2. Если учесть, что характеристики потока V и α зависят от геометрии потока, которая для напорных потоков определяется геометрией трубопровода, понятно, что потери энергии (напора) в разных трубопроводах будут изменяться неодинаково. Показателем изменения напора потока является гидравлический уклон I, который характеризует потери напора на единице длины потока. Физический смысл гидравлического уклона – интенсивность рассеяния энергии по длине потока. Другими словами, величина I показывает, как быстро трубопровод поглощает энергию потока, протекающего в нём