Файл: Курсовой проект по дисциплине Основы конструирования.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.11.2023

Просмотров: 36

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.



КУРСОВОЙ ПРОЕКТ

по дисциплине:

«Основы конструирования»

на тему:

Проектирование механизмов и узлов оборудования электрических станций
Введение
Данный курсовой проект является самостоятельной работой студента, в процессе которой приобретаются и закрепляются навыки по решению комплекса инженерных задач: выполнение кинематических, силовых и прочностных расчетов узлов и деталей энергетического оборудования, выбор материалов, вида термической обработки и т.д.

Объектами курсового проектирования являются узлы и детали оборудования электростанций, а также системы их обеспечения. Например, в качестве питательных устройств для подачи воды применяют центробежные и поршневые насосы. В качестве арматуры для регулирования подачи теплоносителя или изменения его количества применяют задвижки и вентили. Задвижки и вентили выполняют фланцевыми, безфланцевыми, присоединяемыми к трубопроводу сваркой, и т.д. Для подготовки и подачи топлива служат пневмомеханические забрасыватели топлива, топки с движущейся колосниковой решеткой, пылеприготовительные устройства, мельницы-вентиляторы, валковые мельницы, дисковые питатели и др.

Все эти устройства в большинстве случаев состоят из исполнительного рычажного механизма (ИМ) и имеют привод, объединяющий электродвигатель 1, передачу гибкой связью 2 или зубчатую 3 и соединительные муфты 4 (Рис.2).

1. Исходные данные
Таблица 1

Геометрические параметры















10

110

450

130

0

0

0

Силовые факторы

Схема













2

1100

110

1200

120

400





Рис.1 – Положение плоского рычажного механизма



Рис.2 – Типовой привод оборудования с передачами с гибкой и зубчатой связями
2. Кинематический анализ механизма
Произведем структурный анализ рычажного механизма. Степень подвижности плоского механизма рассчитаем по формуле Чебышева:

; .

  • число подвижных звеньев: ;

  • число кинематических пар: .




Пара

Звено

Класс

Вид





5

вращ.





5

вращ.





5

вращ.





5

пост.


Рассчитаем степень подвижности плоского механизма без ведущего звена:
– 2 класс, 2 вид; .




Рис.3 – Положение плоского рычажного механизма без ведущего звена

Рассчитаем степень подвижности ведущего звена:
– 1 класс. Общий класс механизма – 2.





Рис.4 – Положение ведущего звена плоского рычажного механизма
2.1 Расчет скоростей
Построим схему заданного рычажного механизма в тринадцати положениях с шагом в следующем масштабе:
.
Составим векторную систему уравнений, используя теорему об относительном движении:
; .
Определим масштаб для построения плана скоростей:


Зная величину и направление вектора скорости , а также зная линии действия других векторов скоростей, составим 13 планов скоростей механизма используя графо-аналитический метод.

Полученные результаты сведем в таблицу 2:
Таблица 2







































1.

50

1,1

52,39

1,15

2,56

26,2

0,58

15,64

0,34

2.

50

1,1

43,94

0,97

2,15

30,27

0,67

17,26

0,38

3.

50

1,1

24,94

0,55

1,22

44,22

0,97

41,5

0,91

4.

50

1,1

0

0

0

0

0

50

1,1

5.

50

1,1

25,14

0,55

1,23

45,9

1,01

45,05

0,99

6.

50

1,1

43,92

0,97

2,15

35,93

0,79

32,35

0,71

7.

50

1,1

52,31

1,15

2,56

26,13

0,57

15,29

0,34

8.

50

1,1

47,4

1,04

2,32

26,24

0,58

5,72

0,13

9.

50

1,1

28,87

0,64

1,41

38,19

0,84

28,87

0,64

10.

50

1,1

0

0

0

0

0

50

1,1

11.

50

1,1

28,87

0,64

1,41

52,04

1,14

57,74

1,27

12.

50

1,1

47,4

1,04

2,32

40,77

0,9

44,28

0,97

13.

50

1,1

52,39

1,15

2,56

26,2

0,58

15,64

0,34



2.2 План ускорений
План ускорений строим для положения механизма № 6. Составим векторную систему уравнений для построения плана ускорений:


.

направлен по линии от к .
.
направлен по линии от к .
; ; ; .
Определим масштаб для построения плана ускорений:
.
Зная величину и направление векторов ускорения и , а также зная линии действия других векторов ускорений, составим план ускорений механизма, используя графоаналитический метод.

Полученные в результате построения отрезки векторов и умножаем на масштаб для получения действительного значения ускорений:
;

, тогда .

3. Силовой анализ механизма
План сил строим для положения механизма № 6. Силовой анализ механизма начинаем с рассмотрения отсоединенной структурной группы 2–3 второго класса, второго вида. Для определения
рассмотрим условие равновесия второго звена аналитическим методом:
;

;

.
Направление и численные значения и определим из условия равновесия структурной группы:
;