Файл: Курсовой проект по дисциплине Основы конструирования.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.11.2023
Просмотров: 39
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
.
Для построения плана сил необходимо выбрать масштаб:
;
; .
Полученные в результате построения отрезки векторов умножаем на масштаб для получения действительного значения сил:
;
;
.
Для определения рассмотрим условие равновесия третьего звена:
;
;
.
Для определения во внутренней паре (шарнир) рассмотрим условие равновесия третьего звена:
;
.
Найдем графически из построения:
; .
Из условия равновесия первого звена определяем уравновешивающую силу :
;
;
.
Для определения направления и численного значения используют условие равновесия первого звена:
;
.
Выберем новый масштаб:
.
;
;
.
4. Расчет уравновешивающих сил методом рычага Жуковского
Используя теорему «О рычаге Жуковского» переносим с поворотом на все силы, действующие на механизм, на план скоростей в соответствующие точки:
– уравновешивающая сила, действующая в точку ;
– сила, действующая на второе звено в точку ;
– сила, действующая на третье звено в точку ;
– действующий момент представляем как пару сил, которые равны:
.
Из плана скоростей определяем уравновешивающую силу, исходя из условия равновесия плана скоростей для каждого положения механизма:
.
Положение 1, 13:
Положение 2:
Положение 3:
Положение 4:
Положение 5:
Положение 6:
Положение 7:
Положение 8:
Положение 9:
Положение 10:
Положение 11:
Положение 12:
Полученные результаты сведем в таблицу 3.
Таблица 3
5. Расчет элементов привода
Исходные данные:
5.1 Выбор электродвигателя
Номинальная мощность электродвигателя:
.
Требуемая мощность электродвигателя:
,
где – коэффициент полезного действия привода;
– номинальная мощность, .
По каталогам выбираем электродвигатель с ближайшей большей номинальной мощностью и номинальной частотой вращения ротора .
Характеристики выбранного электродвигателя:
Передаточное отношение привода:
, где .
Принимаем , тогда .
5.2 Расчет диаметра вала
Диаметр вала
передаточного или исполнительного механизма определяется по следующей зависимости:
, где ;
.
Полученное значение округлим до ближайшего большего значения стандартного ряда диаметров. Принимаем .
5.3 Расчет фланцевой муфты
Расчетный вращающий момент
где – коэффициент режима работы.
Соотношения между размерами муфты
. Тогда выберем ;
;
.
Тогда выберем ;
Материал муфты при окружной скорости на наружных поверхностях фланцев выбираем Сталь 45.
Расчет болтового соединения
Окружная сила на болты от действия вращающего момента:
где – диаметр окружности центров болтов.
.
Сила, приходящаяся на один болт:
где – назначенное число болтов.
Допускаемые напряжения устанавливаем в зависимости от выбранного материала:
;
Для построения плана сил необходимо выбрать масштаб:
;
; .
Полученные в результате построения отрезки векторов умножаем на масштаб для получения действительного значения сил:
;
;
.
Для определения рассмотрим условие равновесия третьего звена:
;
;
.
Для определения во внутренней паре (шарнир) рассмотрим условие равновесия третьего звена:
;
.
Найдем графически из построения:
; .
Из условия равновесия первого звена определяем уравновешивающую силу :
;
;
.
Для определения направления и численного значения используют условие равновесия первого звена:
;
.
Выберем новый масштаб:
.
;
;
.
4. Расчет уравновешивающих сил методом рычага Жуковского
Используя теорему «О рычаге Жуковского» переносим с поворотом на все силы, действующие на механизм, на план скоростей в соответствующие точки:
– уравновешивающая сила, действующая в точку ;
– сила, действующая на второе звено в точку ;
– сила, действующая на третье звено в точку ;
– действующий момент представляем как пару сил, которые равны:
.
Из плана скоростей определяем уравновешивающую силу, исходя из условия равновесия плана скоростей для каждого положения механизма:
.
Положение 1, 13:
Положение 2:
Положение 3:
Положение 4:
Положение 5:
Положение 6:
Положение 7:
Положение 8:
Положение 9:
Положение 10:
Положение 11:
Положение 12:
Полученные результаты сведем в таблицу 3.
Таблица 3
| | | | | | | | | | | |
1. | 1100 | 15 | 1200 | 14 | 889 | 48 | 889 | 5 | -276 | 0,11 | 30,36 |
2. | 1100 | 29 | 1200 | 15 | 889 | 47 | 889 | 3 | -504 | 0,11 | 55,44 |
3. | 1100 | 29 | 1200 | 36 | 889 | 28 | 889 | 3 | -670 | 0,11 | 73,7 |
4. | 1100 | 19,5 | 1200 | 43,5 | 889 | 0 | 889 | 0 | -615 | 0,11 | 67,65 |
5. | 1100 | 6,6 | 1200 | 39,1 | 889 | 22 | 889 | 3,2 | -345,14 | 0,11 | 37,97 |
6. | 1100 | 4,4 | 1200 | 28,1 | 889 | 38,2 | 889 | 5,7 | 9 | 0,11 | -0,99 |
7. | 1100 | 15,3 | 1200 | 13,3 | 889 | 47,8 | 889 | 4,5 | 274 | 0,11 | -30,14 |
8. | 1100 | 26,2 | 1200 | 5 | 889 | 49,7 | 889 | 2,3 | 386 | 0,11 | -42,46 |
9. | 1100 | 35,7 | 1200 | 25,1 | 889 | 43,3 | 889 | 14,5 | 329 | 0,11 | -36,19 |
10. | 1100 | 39,5 | 1200 | 43,4 | 889 | 0 | 889 | 0 | 173 | 0,11 | -19,03 |
11. | 1100 | 30,7 | 1200 | 50,12 | 889 | 0 | 889 | 28,95 | -13 | 0,11 | 1,43 |
12. | 1100 | 11,2 | 1200 | 38,4 | 889 | 29,3 | 889 | 18,03 | -166 | 0,11 | 18,26 |
13. | 1100 | 15 | 1200 | 14 | 889 | 48 | 889 | 5 | -276 | 0,11 | 30,36 |
5. Расчет элементов привода
Исходные данные:
| |
74 | 10 |
5.1 Выбор электродвигателя
Номинальная мощность электродвигателя:
.
Требуемая мощность электродвигателя:
,
где – коэффициент полезного действия привода;
– номинальная мощность, .
По каталогам выбираем электродвигатель с ближайшей большей номинальной мощностью и номинальной частотой вращения ротора .
Характеристики выбранного электродвигателя:
-
Двигатель асинхронный трехфазный, марки 4А90В8УЗ; -
; -
; -
; -
.
Передаточное отношение привода:
, где .
Принимаем , тогда .
5.2 Расчет диаметра вала
Диаметр вала
передаточного или исполнительного механизма определяется по следующей зависимости:
, где ;
.
Полученное значение округлим до ближайшего большего значения стандартного ряда диаметров. Принимаем .
5.3 Расчет фланцевой муфты
Расчетный вращающий момент
где – коэффициент режима работы.
Соотношения между размерами муфты
-
наружный диаметр:
. Тогда выберем ;
-
диаметр ступицы:
;
-
общая длина:
.
Тогда выберем ;
Материал муфты при окружной скорости на наружных поверхностях фланцев выбираем Сталь 45.
Расчет болтового соединения
Окружная сила на болты от действия вращающего момента:
где – диаметр окружности центров болтов.
.
Сила, приходящаяся на один болт:
где – назначенное число болтов.
Допускаемые напряжения устанавливаем в зависимости от выбранного материала:
-
допускаемые напряжения на срез:
;
-
допускаемые напряжения на смятие: