Файл: Модуль 2, патфиз Стомат Этиология повреждений клетки.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 22.11.2023

Просмотров: 111

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

4. Роль свободных радикалов в патологии клетки
Свободные радикалы принимают участие в нормальных биологических процессах в организме. Например, они являются частью каскада событий в реализации антимикробных свойств фагоцитов в присутствии НАДФН-оксидазы. Этот процесс занимает центральное место в системе антимикробной защиты и направлен на повреждения мембран, ДНК и других клеточных компонентов чужеродных организмов . Свободные радикалы могут выступать в качестве ре-гуляторных молекул в биохимических процессах: например, лимфоциты и фибробласты постоянно генерируют небольшое количество супероксид-радикалов, которые являются регуляторами роста. Другие типы нефагоцитарных клеток, в том числе эндотелиальные клетки и гладкомышечные клетки артерий, могут при стимуляции освобождать супероксид. NO из эндотелиальных клеток участвует в регуляции тонуса сосудов, вызывая расслабление гладкомышечных клеток. NO макрофагов способствует «убийству» опухолевых клеток и бактерий. Свободные радикалы также принимают участие в деятельности некоторых ферментов, например, рибонуклеозид дифосфат редуктазы, цитохром Р-450 и простагландин синтазы.
5. Повреждение клеточных мембран и ферментных систем
К числу основных механизмов повреждения мембран клеток относят:
1) чрезмерную интенсификацию свободнорадикальных реакций (ССР) и сво- боднорадикального перикисного окисления липидов (СПОЛ) мембран;
2) значительную активацию гидролаз (лизосомальных, мембраносвязанных, свободных);
3) внедрение амфифильных соединений (главным образом продуктов СПОЛ и липолиза) в липидную фазу мембран и их тереогенное (разрушающее) действие;
4) торможение процессов ресинтеза поврежденных компонентов мембран и (или) синтеза их заново (de novo);
5) нарушение конформации макромолекул;
6) перерастяжение и разрыв мембран набухших клеток и (или) их органелл.
Важно, что все указанные механизмы прямо или опосредованно обусловливают повреждение, изменение конформации и (или) кинетических свойств ферментов клетки, многие из которых связаны с мембранами.
Одним из важнейших механизмов повреждения мембран и ферментов является чрезмерная активация свободнорадикальных реакций и СПОЛ. Эти реакции протекают в клетках и в норме, являясь необходимым звеном таких жизненно важных процессов, как транспорт электронов в цепи дыхательных ферментов, синтез простагландинов и лейкотриенов, пролиферация и созревание клеток, фагоцитоз, метаболизм катехоламинов и др. Реакции СПОЛ участвуют в процессах регуляции липидного состава биомембран и активности ферментов. Последнее является результатом как прямого действия продуктов липопероксидных реакций на энзимы, так и опосредованного — через изменения состояния мембран, с которыми ассоциированы многие ферменты.
Интенсивность СПОЛ регулируется соотношением факторов, активирующих


(прооксиданты) и подавляющих (антиоксиданты) этот процесс (схема 2). К числу наиболее активных прооксидантов относятся легко окисляемые соединения, индуцирующие сводные радикалы, в частности нафтохиноны, витамины А и D, восстановители НАДФН2, НАДН2, липоевая кислота, продукты метаболизма простагландинов и катехоламинов.
В реакции пероксидации могут вовлекаться соединения различного биохимического состава: липиды, белки, нуклеиновые кислоты. Однако ведущее значение среди них имеют фосфолипиды. Это определяется тем, что они являются основным компонентом мембран и легко вступают в оксигенные реакции.
Процесс СПОЛ условно можно разделить на три этапа:
1) кислородной инициации («кислородный» этап);
2) образования свободных радикалов органических и неорганических
(«свободнорадикальный» этап);
3) образование перекисей липидов и других соединений («перекисный» этап).
Исследования последних лет показали, что чрезмерная интенсификация свободнорадикальных и перекисных реакций является одним из главных факторов повреждения мембран и ферментов клеток. Ведущее значение при этом имеют следующие процессы:
1) изменение физико-химических свойств липидов мембран, уменьшение содержания в них фосфолипидов, холестерина, жирных кислот. Это обусловливает нарушение конформации их липопротеидных комплексов и в связи с этим снижение активности белков и ферментных систем, обеспечивающих рецепцию гуморальных воздействий, трансмембранный перенос ионов и молекул, структурную целостность мембран;
2) изменение физико-химических свойств белковых мицелл, выполняющих структурную и ферментативные функции в клетке;
3) образование структурных дефектов в мембране — так называемых простейших каклов (кластеров) вследствие внедрения в них продуктов СПОЛ. В частности, накопление в мембране липидных гидроперекисей приводит их к объединению в мицеллы, создающие трансмембранные каналы проницаемости, по которым возможен неконтролируемый ток катионов и других молекул органических и неорганических соединений в клетку и из нее. Увеличение образования продуктов
СПОЛ и параллельно с этим кластеров может привести к фрагментации мембран
(этот процесс получил название детер-гентного действия продуктов СПОЛ) и к гибели клетки. Указанные процессы в свою очередь обуславливают нарушение важных для жизнедеятельности клеток процессов — возбудимости, генерации и проведения нервного импульса, обмена веществ, восприятия и реализации регулирующих воздействий, межклеточного взаимодействия и др.
6.
Нарушение энергообразования в клетке, как фактор повреждения
Процесс энергообразования может быть нарушен разными способами. В данной статье рассмотрен только эффект ишемии. Его основу составляют несколько компонентов, каждый из которых нарушает образование энергии: гипоксия,

прекращение доступа субстратов к клеткам и удаления из них продуктов обмена, ацидоз (закисление среды). При внезапной ишемии миокарда прекращается синтез АТФ в митохондриях и в клетках происходит быстрое снижение уровня Кф, а затем и АТФ. Недостаточное энергоснабжение по-разному сказывается на функции клеточных органелл. Наиболее глубоко нарушается функция сократительного аппарата - основного потребителя энергии. Недостаток АТФ в миофибриллах проявляется двояким образом - уменьшается количество связей- мостиков между актиновыми и миозиновыми нитями и зависимая от них сила сокращения, а также возникают неразмыкающиеся связи между некоторыми молекулами миозина и актина, в результате дальнейшее перемещение нитей в данном саркомере становится невозможным - возникает контрактура. Она длится до тех пор, пока не будет рефосфорилирована молекула АДФ. Следствием контрактуры является нарушение растяжимости миокарда, затрудняющее наполнение сердца и снижающее его насосную функцию.
Мембранные ионные насосы характеризуются относительно низкой потребностью в энергии и в основном обеспечиваются АТФ из гликолиза, вследствие чего их функция более устойчива к условиям недостатка энергии. Поэтому при ишемии миокарда электрическая активность сердца сохраняется гораздо более длительное время, чем его сократительная способность.
Принципиально важным явлением, наблюдаемым в начальной стадии ишемии, является крутое снижение уровня сократительной функции сердца при относительно умеренном снижении уровня АТФ и Кф. Такое сочетание представляется необходимым для сохранения жизнеспособности клеток, поскольку имеющегося запаса АТФ + Кф при прежней интенсивности сократительной функции хватает всего на несколько десятков сокращений.
Выживание клеток в течение некоторого периода ишемии возможно благодаря существованию защитных механизмов, направленных прежде всего на ограничение расхода АТФ в миофибриллах.
Защитные механизмы, мобилизуемые при ишемии. Первым и наиболее ранним механизмом такого рода следует считать открытие АТФ-зависимых калиевых каналов (рис. 2). Эти каналы при нормальном содержании АТФ закрыты, но недостаточный ресинтез АТФ независимо от его причины сопровождается открытием каналов и усиленным выходом К+ из клеток в соответствии с концентрационным градиентом. При этом длительность потенциала действия значительно укорачивается, следовательно, уменьшается и время, в течение которого ионы Са2 + входят в клетки и активируют миофибриллы. Поскольку величина трансмембранного потенциала клеток в высокой степени зависит от соотношения ионов К+ внутри и снаружи, происходящее при длительной ишемии накопление К+ снаружи мембраны значительно снижает величину мембранного потенциала и возбудимость клеток. Снижается и частота самопроизвольных возбуждений сердца вплоть до полной его остановки.
Защитное действие двух других факторов обусловлено их прямым воздействием на кальциевую активацию миофибрилл. Один из таких факторов - это закисление миоплазмы, ацидоз. Показатель кислотности миоплазмы рН в норме близок к 7,0, при этом количество положительных водородных (Н+) и отрицательных гидроксильных (ОН-) ионов в миоплазме примерно одинаково. Прекращение окисления в митохондриях при ишемии сопровождается активацией гликолиза,

накоплением лактата (легко диссоциирующей молочной кислоты) и других недоокисленных метаболитов. В результате концентрация Н+ возрастает, рН сдвигается в кислую сторону, и его уровень в кардиомиоцитах может достигать 6,0 и менее.
Сразу после начала ишемии в клетках начинают накапливаться ионы фосфата, освобождающегося при распаде молекул АТФ и Кф. Как ионы водорода, так и фосфата снижают чувствительность сократительных белков к Са2 +. Это было показано [3] в опытах на изолированных миокардиальных волокнах, находящихся в среде, состав которой близок к внутриклеточному (рис. 3). При низкой концентрации Са2 + (менее 0,1 мкМ) миофибриллы расслаблены.
Ступенеобразный подъем концентрации Са2 + при нормальном уровне фосфата и
Н+ сопровождается приростом силы, развиваемой волокнами, вплоть до максимума. Получающаяся кривая характеризует кальциевую чувствительность миофибрилл. Повторение опыта в условиях ацидоза значительно сдвигает эту кривую вправо, то есть снижает силу сокращения при той же концентрации Са2 +.
Добавление к этой среде ионов фосфата сдвигает эту кривую еще больше, что указывает на дальнейшее снижение чувствительности сократительных белков к
Са2 +.
Следующим защитным фактором является аденозин, накапливающийся во внеклеточном пространстве в значительном количестве вследствие некомпенсируемого распада АТФ. Ранее уже упоминавшееся сосудорасширяющее действие аденозина может оказать полезный эффект при очаговой ишемии, когда расширение артериол в соседних с зоной ишемии областях в какой-то степени улучшает кровоснабжение ишемической зоны. Но еще более важным может быть другой эффект аденозина, связанный с блокадой адренорецепторов на мембранах кардиомиоцитов. В результате неизбежно высвобождающийся из окончаний симпатических нервов нейромедиатор норадреналин неспособен оказать обычное активирующее действие на функцию кардиомиоцитов, и это также замедляет процесс снижения запасов макроэргических фосфатов.
Таким образом, уже в начальном периоде ишемии параллельно активируются несколько защитных механизмов, уменьшающих как вход ионов Са2 + в кардиомиоциты, так и чувствительность сократительного аппарата к ним. При сочетании всех указанных механизмов уровень сократительной функции изолированного сердца падает при ишемии очень быстро (в пределах 30 с), примерно до 5-10% от исходного уровня, в то время как уровень макроэргических фосфатов снижается весьма умеренно. Эта особенность позволяет кардиомиоцитам экономно расходовать имеющийся запас энергии и пережить неблагоприятный период. При длительной ишемии (несколько часов) углубление энергодефицита и усиление ацидоза приводят к деструкции клеточных органелл и некрозу клеток.
Компенсаторные факторы при ишемии. В реальных условиях благодаря наличию разветвленной сосудистой сети в стенках сердечной мышцы даже полная закупорка артерии небольшого размера не всегда приводит к ишемии данного участка миокарда. Фактически более или менее значительная зона находится скорее в условиях сниженного кровотока - гипоперфузии, что позволяет сохранить ее жизнеспособность, а последующее улучшение кровоснабжения - восстановить сократимость кардиомиоцитов данной ишемической зоны.


Зона ишемии может быть уменьшена как при действии естественных регуляторов, так и под влиянием лекарственных препаратов. К первым относятся уже упоминавшийся аденозин, ионы К+, а также сравнительно недавно открытый сосудорасширяющий фактор, выделяемый эндотелием сосудов, - окись азота (NO).
Именно окись азота является посредником действия многих известных сосудорасширяющих средств, наиболее известным представителем которых является нитроглицерин. Последний уже давно используется для устранения сосудистых спазмов.