Файл: Контрольная работа по дисциплине Введение в профессиональную деятельность Тема студент гр. Тэбз фио принял Эйзлер А. М. Иркутск 2023.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 29.11.2023

Просмотров: 44

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


В западной части страны развернулось строительство АЭС. В 1964 г. вошли в эксплуатацию энергоблок 100 МВт на Белоярской АЭС и энергоблок 200 МВт на Нововоронежской АЭС; во второй половине 60-х годов были введены вторые энергоблоки на этих АЭС: 200 МВт на Белоярской и 365 МВт на Нововоронежской АЭС.

В течение 60-х годов завершилось формирование ЕЭС европейской части СССР, и в 1970 г. начался следующий этап развития электроэнергетики страны – формирование ЕЭС СССР. В составе ЕЭС в 1970 г. работали параллельно ОЭС Центра, Урала, Средней Волги, Северо-запада, Юга, Северного Кавказа и Закавказья, включавшие 63 энергосистемы. Три территориальные ОЭС – Казахстана, Сибири и Средней Азии – работали раздельно; ОЭС Дальнего Востока находилась в стадии формирования. Суммарная мощность электростанций ЕЭС в 1970 г. составила 104,9 млн. кВт, всех ОЭС – 142,9 млн. кВт, годовая выработка электроэнергии всеми электростанциями ЕЭС достигла 529,6 млрд. кВт?ч, всех ОЭС – 692,5 млрд. кВт?ч.

Переход к формированию ЕЭС в масштабе всей страны обусловил необходимость организации высшей ступени иерархии диспетчерского управления – создания ЦДУ ЕЭС СССР, которое было образовано в 1969 г.

В 1972 г. в состав ЕЭС СССР вошла ОЭС Казахстана. В 1973 г. энергосистема Болгарии присоединена на параллельную работу с ЕЭС СССР по межгосударственной связи 400 кВ Молдавская ГРЭС – Вулканешты – Добруджа.

В 1978 г. с завершением строительства транзитной связи 500 кВ Сибирь – Казахстан – Урал присоединилась на параллельную работу ОЭС Сибири. В том же году было закончено строительство межгосударственной связи 750 кВ Западная Украина – Альбертирша (Венгрия), и с 1979 г. началась параллельная работа ЕЭС СССР и ОЭС стран м членов СЭВ.

От сетей ЕЭС СССР осуществлялся экспорт электроэнергии в МНР, Финляндию, Турцию и Афганистан; через преобразовательную подстанцию постоянного тока в районе Выборга ЕЭС СССР соединялась с энергообъединением Скандинавских стран NORDEL.

Динамика структуры генерирующих мощностей в 70-х и 80-х годах характеризуется нарастающим вводом мощностей на АЭС в западной части страны и дальнейшим вводом мощностей на высокоэффективных ГЭС в основном в восточной части страны, началом работ по первому этапу создания Экибастузского энергетического комплекса, общим ростом концентрации генерирующих мощностей и увеличением единичной мощности агрегатов.

Мощность наиболее крупных электростанций России в настоящее время составляет: ТЭС – 4800 МВт (Сургутская ГРЭС-2), АЭС – 4000 МВт (Балаковская, Ленинградская, Курская), ГЭС — 6400 МВт (Саяно-Шушенская).


Технический прогресс в развитии системообразующих сетей характеризовался последовательным переходом к более высоким ступеням напряжения. Освоение напряжения 750 кВ началось с ввода в эксплуатацию в 1967 г. опытно-промышленной электропередачи 750 кВ Конаковская ГРЭС – Москва. В течение 1971–1975 гг. в ОЭС Юга была сооружена широтная магистраль 750 кВ Донбасс – Днепр – Винница – Западная Украина. В 1975 г. была сооружена межсистемная связь 750 кВ Ленинград — Конаково, позволившая передать в ОЭС Центра избыточную мощность ОЭС Северо-запада. Для создания мощных связей с восточной частью ЕЭС сооружалась магистральная линия электропередачи 1150 кВ Сибирь – Казахстан — Урал. Было начато также строительство электропередачи постоянного тока напряжением 1500 кВ Экибастуз – Центр.

В табл. 5.1 приведены данные по установленной мощности электростанций и протяженности электрических сетей 220–1150 кВ ЕЭС СССР за период 1960–1991 гг.

Формирование ЕЭС осуществлялось в основном с использованием двух систем напряжений: основной системы ПО – 220–500 кВ с последующим внедрением более высокой ступени напряжения 1150 кВ и системы – ПО – 150–330–750 кВ.

Создание мощных территориальных энергообъединений и организация их параллельной работы в составе ЕЭС СССР дали возможность повысить темпы роста энергетических мощностей за счет укрупнения электростанций и увеличения единичной мощности агрегатов, снизить стоимость 1 кВт установленной мощности, повысить производительность труда. Удельная численность промышленно-производственного персонала, занятого на электростанциях, на 1 МВт установленной мощности в электрических сетях и других подсобных предприятиях отрасли снизилась с 11 в 1950 г. до 2,8 чел. в 1990 г., а удельные расходы топлива на производство электроэнергии — с 590 до 325,8 г/(кВт?ч). Последовательно происходило уменьшение относительных потерь на транспорт электрической энергии, хотя и не в такой степени, как указанных выше показателей. В 1990 г. потери электроэнергии в электрических сетях на ее транспорт составили 8,65%.

В послевоенные годы электрификация явилась основой научно-технического прогресса страны. На ее базе происходило непрерывное совершенствование технологий в промышленности, транспорте, связи, сельском хозяйстве и строительстве, осуществлялась механизация и автоматизация производственных процессов. Рост производства электроэнергии в эти годы опережал рост произведенного национального дохода в 1,6 раза.

Общий экономический эффект за счет создания ЕЭС в сравнении с изолированной работой энергосистем оценивался снижением капитальных вложений в электроэнергетику на 2 млрд. руб. в ценах 1984 г. и уменьшением ежегодных эксплуатационных расходов на сумму 1 млрд. руб. Выигрыш в снижении суммарной установленной мощности электростанций ЕЭС оценивался цифрой порядка 15 млн. кВт. Несмотря на то что требования в отношении резервов мощности и надежности к основным электрическим сетям в ЕЭС СССР были несколько ниже аналогичных требований в энергообъединениях Западных стран, благодаря хорошо организованному управлению обеспечивалась высокая надежность электроснабжения потребителей, не было системных аварий, затрагивающих большое число потребителей, какие имели место в США (1965, 1977, 1996 гг.), Франции (1978 г.), Швеции (1979, 1983 гг.), Бельгии (1982 г.), Канаде (1982 г.).



Следующий этап в развитии электроэнергетики на территории бывшего СССР связан с происшедшими политическими изменениями в независимых государствах бывших республиках СССР.

Раздел электроэнергетической собственности между независимыми государствами – бывшими республиками СССР – обусловил необходимость перехода от централизованного планирования развития и управления функционированием ЕЭС бывшего СССР к скоординированному планированию развития и управлению функционированием объединенных энергосистем независимых государств.

В 1992 г. было заключено соглашение «О координации межгосударственных отношений в области электроэнергетики Содружества Независимых Государств». В соответствии с ним был создан электроэнергетический Совет из числа первых руководителей электроэнергетических отраслей СНГ и его постоянно работающий орган – Исполнительный комитет. Позднее к этому соглашению присоединилась Грузия.

В настоящее время внутри стран СНГ проводятся различные преобразования электроэнергетического сектора. Наиболее существенные изменения в этой области произошли в Российской Федерации. В декабре 1992 г. было организовано Российское акционерное общество энергетики и электрификации (РАО «ЕЭС России»), в уставной капитал которого переданы из районных энергосистем крупные электростанции мощностью: тепловые – 1000 МВт и более, гидравлические – 300 МВт и более, магистральные линии электропередачи высокого напряжения, формирующие Единую энергосистему Российской Федерации, ЦДУ Единой энергосистемы России, диспетчерские управления ОЭС, научно-исследовательские и проектные организации. На базе крупных электростанций организованы дочерние акционерные общества РАО «ЕЭС России», а на базе региональных энергосистем — региональные акционерные общества АОэнерго. Создан федеральный оптовый рынок электрической энергии и мощности. Проведенные в России преобразования в электроэнергетике способствовали обеспечению устойчивой работы отрасли в тяжелых условиях экономического и финансового кризиса в стране.

В других странах СНГ процесс реформирования структур управления в электроэнергетике находится в разных стадиях развития. Наиболее продвинулась в вопросах реформирования структуры управления в электроэнергетике вслед за Российской Федерацией Украина. Существенные изменения в управлении электроэнергетикой произошли в Армении, Грузии, Казахстане и Киргизии. Ведется подготовка к структурной перестройке и в других странах СНГ.


К концу 1995 г. установленная мощность электростанций государств Содружества составила около 315 млн. кВт. Производство электроэнергии в 1995 г. составило 1260 млрд. кВт?ч и снизилось по сравнению с 1990 г. на 27%. В структуре генерирующих мощностей доля ТЭС составляет 69%, доля ГЭС и АЭС – соответственно 20 и 11%.

Наиболее важными задачами, стоящими перед странами СНГ в области электроэнергетики, становятся: повышение эффективности производства и использования энергии; коренное совершенствование системы формирования тарифов; обеспечение надежности электроснабжения потребителей; улучшение защиты окружающей среды; обеспечение необходимых вводов и модернизация существующих электростанций и сетей с использованием новых технологий; коренное повышение технического уровня оборудования и показателей качества электрической энергии, приведение их в соответствие с мировым уровнем; создание нормативной и законодательной базы, обеспечивающей устойчивое развитие электроэнергетики государств Содружества.

Важнейшее значение приобретают углубление интеграции стран СНГ в области электроэнергетики и организация эффективного оперативно-технологического взаимодействия объединенных энергосистем государств Содружества. Это позволит оптимальным образом развивать электроэнергетику, уменьшить объем необходимых инвестиций, повысить надежность электроснабжения потребителей, улучшить использование первичных энергоресурсов, осуществлять взаимовыгодные обмены электроэнергией, уменьшить затраты на топливо для электростанций и оказать в целом положительное влияние на экономику стран СНГ, повысить ее конкурентоспособность на мировом рынке.

Этапы развития паровых машин, паровых котлов

Паровой котел – устройство, имеющее топку, обогреваемое газообразными продуктами сжигаемого в топке органического топлива и предназначенное для получения пара с давлением выше атмосферного, используемого вне самого устройства. Рабочим телом подавляющего большинства паровых котлов, является вода.

Упоминания о паровом котле как о парогенераторе, отделённом от топки, встречаются в работах учёных: итальянца Дж. делла Порта (1601), француза С. де Ко (1615), англичанина Э. С. Вустера (1663). Однако, промышленное применение парового котла началось на рубеже XVII и XVIII вв. в связи с бурным развитием горнозаводской и угледобывающей промышленности. Ранние конструкции паровых котлов по форме напоминали шар или же котлы для варки пищи, сначала их изготовляли из меди, а затем из чугуна. Одним из первых «настоящих» паровых котлов считают котёл Д. Папена, предложенный им в 1680.


Конструкции современных паровых котлов сложились в процессе изменения конструктивных форм выпускавшегося до 2-й половины XIX в. простейшего цилиндрического парового котла, паропроизводительностью 0,4 т/ч; поверхность нагрева этого котла не превышала 25 м2, давление пара 1 Мн/м2 (10 кгс/см2), а КПД 30%. Развитие паровых котлов шло по двум направлениям: увеличения числа потоков газов (газотрубные котлы) и увеличения числа потоков воды и пара (водотрубные котлы). Первые газотрубные паровые котлы представляли собой цилиндрические сосуды, в которые первоначально вставляли 1, 2 или 3 трубы большого диаметра (жаровые трубы), а впоследствии десятки труб значительно меньшего диаметра (дымогарные трубы), по которым проходил газ.

Увеличение поверхности нагрева газотрубных паровых котлов происходило в габаритах первоначального цилиндрического котла или даже в меньших габаритах. Следствием этого явились некоторое повышение паропроизводительности котла (при незначительном увеличении суммарной массы), а также улучшение передачи тепла от дымовых газов к поверхности нагрева, приводившее к снижению температуры газов на выходе из парового котла, то есть к повышению КПД.

Газотрубные паровые котлы отличались от цилиндрических относительно малыми размерами и высоким КПД (60%), однако паропроизводительность их, ограничиваемая габаритами, не превышала нескольких т/ч, а конструкционные особенности ограничивали давление пара в котле 1,5—1,8 Мн/м2. Поэтому газотрубные паровые котлы сохранились только на транспортных установках (паровозы, пароходы), а из стационарных установок они полностью вытеснены водотрубными котлами.

Создание водотрубных паровых котлов шло путём увеличения числа цилиндров, составлявших котёл, сначала до 3-9 относительно больших диаметров (батарейные котлы), а затем до десятков и сотен цилиндров небольших диаметров, превратившихся в кипятильные, а в дальнейшем и в экранные трубы.

Увеличение поверхности нагрева водотрубных паровых котлов сопровождалось увеличением их габаритов, и в первую очередь высоты, но вместе с тем во много раз возрастала паропроизводительность, уменьшался удельный расход металла, всё больше повышались параметры пара и КПД.

Со 2-й половины XIX в. выпускались камерные и секционные горизонтально-водотрубные паровые котлы с естественной циркуляцией, у которых кипятильные трубы были расположены с наклоном в 10-12° к горизонту. Камерный паровой котел состоял из одного или нескольких барабанов, подсоединённых к ним сборных камер и пучков кипятильных труб, ввальцованных в камеры. Его поверхность нагрева 350 м