Файл: Отчет по расчетнографической работе 2 По дисциплине.docx

ВУЗ: Не указан

Категория: Отчет по практике

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 46

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Некоммерческое АО «Алматинский университет энергетики и связи имени Гумарбека Даукеева»

Институт электроэнергетики и электротехники

Кафедра «Электроснабжения и возобновляемых источников энергии»


ОТЧЕТ

по расчетно-графической работе № 2

По дисциплине Cиловая электроника в системах ВИЭ

На тему Типы солнечных панелей

Образовательная программа: 6B07118 – Современные и инновационные технологии возобновляемой энергетики

Выполнил Кочер Илья

Группа СИТВЭ-20-2

Принял ст. преп Солтанаев А.М.

(ученая степень, звание, Ф.И.О.)

«»2021г

(оценка) (подпись)

Алматы, 2021 г.

Содержание


Введение 3


Введение


Еще 150 лет тому назад на нашей планете использовались исключительно возобновляемые и экологически безопасные источники энергии: водные потоки рек и морских приливов – для вращения водяных колес, ветер – для приведения в действие мельниц и парусов, дрова, торф, отходы сельского хозяйства – для отопления. Для прямого преобразования солнечной энергии в электрическую используется явление фотоэффекта в солнечных элементах (СЭ) на основе структуры с p-n переходом. На сегодняшний день максимальная эффективность некоторых типов полупроводниковых СЭ составляет более 30 %.В зависимости от технологии изготовления фотоэлектрических преобразователей, существуют различные виды солнечных батарей. Наиболее широко распространены кристаллические фотоэлектрические преобразователи, изготовленные из моно- или мультикристаллического кремния, а также тонкопленочные солнечные элементы на основе аморфного кремния, теллурида кадмия, арсенида галлия, фосфида индия и некоторых других соединений. На сегодняшний день доля кристаллических солнечных элементов составляет около 93 %, а тонкопленочных – около 7 %.

Ведутся разработки по применению концентраторных и электрохимических солнечных элементов. Первое практическое использование  кремниевых солнечных батарей (СБ) для энергетических целей имело место в околоземном космическом пространстве. Солнечные батареи и сегодня остаются основным источником электроэнергии для космических аппаратов, поскольку необычные эксплуатационные условия (невесомость, глубокий вакуум, контрастные изменения температуры) не позволяют широко использовать в условиях космоса известные на Земле традиционные методы получения электричества. Работа в космосе предъявляет к СЭ очень жесткие и подчас противоречивые требования. Сокращение сроков разработки и улучшение эксплуатационных характеристик систем электроснабжения космических аппаратов выдвигает на первый план необходимость создания эффективных методов проектирования подобных систем, в частности, предсказания и анализа работы солнечных батарей под действием разнообразных факторов окружающего пространства в статическом и динамическом режимах нагрузки.



  1. Монокристаллические солнечные панели.

Солнечные фотоэлементы на основе поли и монокристаллов приобретают все большую популярность. Поэтому важно выяснить, какому типу оборудования отдать свой выбор. Выбирая для установки и использования в энергетической системе своего загородного жилища солнечные батареи, обязательно нужно изучить следующие рабочие параметры предлагаемой системы: Ее технические и функциональные характеристики; Указываемая производителем длительность срока службы солнечных панелей в различных природных условиях (данные параметры очень хороши в оборудовании, где местом производства будет указана Германия); Реальные показатели коэффициента полезного действия оборудования, здесь также обязательно надо изучить производительность предлагаемого оборудования в различных погодных условиях, когда активность поступающих солнечных лучей меняется вместе с временем года и погодными условиями; Стоит определиться с типом фотоэлементов, используемых в солнечной электрической системе. На сегодняшний день самыми распространенными стали фотоэлементы на основе ячеек из поли или монокристаллов. Вопрос выбора обычно стоит между двумя этими типами систем.

Сегодня подавляющее большинство оборудования, преобразующего энергию солнечных лучей в электроток, изготавливается на основе кремния. К настоящему времени на рынке подобной продукции более 90% занимают солнечные панели, сделанные на основе монокристаллического кремния. Данный вид солнечных энергетических установок, в первую очередь, предназначен к использованию частными лицами в жилом фонде. Используемый в производстве солнечных фотоэлементов, кремний имеет различные степени очистки. Градация данного параметра, присваемого качеству кремния, указывает на то, как в структуре его кристаллической решетки упорядочены молекулы.В данном случае, чем качественней и более технически продвинуто производство кремния, тем лучше будет упорядочена молекулярная структура продукции, а значит, и коэффициент полезного действия, создаваемых на его основе, солнечных панелей. В основном, при ссылке на этот фактор солнечные энергетические установки и делятся на различные виды и типы. Конечно, добиться в промышленных масштабах отличной упорядоченности молекулярной структуры решетки кремния можно только на производствах с оборудованием и процессами технологий высочайшего уровня, но это очень затратный и дорогостоящий процесс. Из этого можно сделать вывод, что степень очистки получаемого кристалла кремния не имеет определяющего значения. Более весомыми параметрами в достигаемой производительности солнечных элементов и определении выбора при приобретении как раз выступают предлагаемая эффективность использования полезной площади оборудования и ее общая экономическая результативность.



Теперь, исходя из описанного выше, можно прийти к выводам, что кристаллический кремний выступает основным действующим элементом всех производимых сегодня солнечных панелей, которые делятся они на монокристаллические и поликристаллические.Отличительной чертой, которой обладают монокристаллические панели, которые произведены с использованием кремния (монокристаллического), является их выраженная однородность расцветки рабочей пластины, а также всего внешнего вида. В результате обладания данными параметрами, определяются габариты зерен монокристаллического кремния. Непосредственно на производстве, при использовании технологического сырья, выращивается слиток монокристаллического кремния, который имеет в своей основе довольно серьезные характеристики качества частоты и ровной структуры кристаллической решетки. Изготовление фотоэлементов, которые собирают в монокристаллические модули, осуществляется с применением слитков кремния, имеющих цилиндрическую форму.Производство таких фотоэлементов предполагает выращивание цельных кристаллов кремния. Этот процесс, известный как метод Чохральского, достаточно энергоемкий и иногда проходит неудачно. Повреждённые заготовки могут быть использованы для поликристаллических элементов.В процессе производства сам слиток обрабатывается со всех концов, что значительно повышает технические характеристики результативности работы конечного оборудования и его эффективность. Эта особенность производства влияет на окончательный внешний вид сборки монокристаллов, в результате все составляющие становятся одинаковыми с виду.

В связи с качественным производством исходного элемента высокой структурированностью молекулярной решетки монокристаллов монокристаллические элементы обладают очень высоким коэффициентом полезного действия. Собранные по такому принципу солнечные энергетические установки, на выходе обладают производительностью до двадцати процентов; Для получения равнозначной мощности необходима установка, размеры которой будут значительно меньше по сравнению с аналогичными видами фотоэлементов, произведенных по менее качественным технологиям. Это означает, что если вам надо получить установку мощностью производства электрического тока на уровне 20 ватт, будет нужно приобрести и установить кремниевые батареи, которые в размерах будут небольшими;


И еще одно очень важное преимущество — это, конечно же, высокая долговечность эксплуатации такого оборудования. Монокристаллические пластины самые долговечные среди всего предлагаемого на рынке оборудования. При правильной установке и эксплуатации эти пластины верно прослужат вам по своему назначению не менее четверти века.

  1. Поликристаллические солнечные панели.

Поликристаллические солнечные батареи – это разновидность фотобатарей, которые производятся из поликристаллов кремния. Поликристалический или мультикристалический кремний специально производят для фотоэлементов солнечных батарей. Больше нигде он не используется. Поликристаллические солнечные батареи внешне отличаются от других видов солнечных батарей, так как поликремний имеет неравномерный цвет с синеватым отливом.

На сегодняшний день самыми распространенными стали фотоэлементы на основе ячеек из поли или монокристаллов. Вопрос выбора обычно стоит между двумя этими типами систем. Несмотря на то что монокристаллические и поликристаллические солнечные панели действуют по одному принципу, эти элементы имеют достаточно много различий между собой. Стоит отметить, что говоря о различиях, имеется в виду, что не только разница в технических характеристиках и показателях эффективности, существуют различия и в поведении оборудования в различных широтах, при отличающихся погодных условиях. Итак, чтобы помочь выбрать какие все-таки типы солнечных фотоэлементов моно или поликристаллические, лучше изучим суть вопроса и особенности производства. Солнечные батареи, производимые на основе поликристаллических кремниевых элементов, созданы и выпущены на рынок сравнительно давно. Впервые они были предложены потребителю еще в 1981 году. В процессе их производства нет необходимости задействовать сложные и дорогостоящие высокотехнологические процессы. Производством не ставиться цель упорядочивания молекулярной структуры решетки кремния. Исходное сырье просто плавят и заливают в готовые формы для отливки. Далее, остывшие блоки делят на пластины стандартных размеров имеющие правильную форму квадрата. В результате на выходе мы имеем относительно недорогие и простые в использовании поликристаллические модули. Поликристаллические солнечные батареи габаритнее и дешевле монокристаллических панелей. У них меньший хоть и незначительно КПД – до 18%. Есть лабораторные образцы с производительностью 20,5%. Имеются у поликремниевых фотоэлементов и внешние особенности: неоднородный темно-синий цвет, квадратная форма. Количество ячеек, как правило, – 60 и 72. Мощность может достигать 365 Вт. Стандартный срок службы – 25–30 лет. Потеря производительности в течение этого времени в среднем составляет 20%.


В чем же достоинство оборудования на основе поликристаллических элементов? Приобретение и установка такого оборудования не повлечет вашего разорения. В результате остановки выбора на этом типе оборудования вы значительно сэкономите, так как в процессе производства довольно серьезно снижаются расходы материалов, дешевле обходится дальнейшая переработка и утилизация; Технологический процесс отличается намного меньшим в процентном соотношении количеством брака. Однако одновременно с этими неоспоримыми достоинствами поликристаллические фотоэлементы имеют и ряд некоторых недостатков: Поликристаллические солнечные модули хуже противостоят влиянию повышенных температур. Их разница в сравнении с аналогами на основе монокристаллов состоит в том, что влияние высоких температур разрушительно влияет на сроки службы всей системы, снижает показатели мощности. Но в связи с тем, что все-таки влияние на функциональные характеристики не столь существенно, особенно заострять на этом внимание нет необходимости;

Следующий недостаток — это сниженная эффективность использования полезной площади, используемой в солнечной энергетической системе поликристаллических фотоэлементов, значительно ниже, чем у аналогичной продукции на моно кристаллах. Чтобы получить на выходе те же показатели мощности придется использовать большее количество панелей. Поликристаллические солнечные батареи широко применяются в самых разных сферах жизни:для электроснабжения промышленных объектовжилых домов, зданий и сооружений туристической отрасли, баз отдыха, сельского хозяйства; для электроснабжения мобильного оборудования; для освещения дворов, парков, скверов, частных владений. Особенно автономные электростанции с поликристаллическими солнечными батареями широко применяются в труднодоступных и отдаленных районах. Благодаря ним можно без особых затрат решить проблему обеспечения населенных пунктов электричеством, наладить бесперебойную работу системы жизнеобеспечения экологически чистым способом.

От поликристаллических солнечных батарей могут эффективно работать системы радио- и мобильной связи, очистки и опреснения воды и для множества других целей. Такие системы широко распространены для жизнеобеспечения объектов сферы добычи нефти и газа, которые устанавливаются вдали от населенных пунктов.Поликристаллические солнечные батареи можно установить практически в любом месте. Они не загрязняют экологию, для них не нужно сложное регулярное обслуживание обычно необходима лишь регулярная чистка лицевой стороны батареи от налипшей пыли, их легко смонтировать, а работа таких батарей полностью автономна.Размеры могут быть практически любыми, параметры зависят от мощности агрегата. Так как выпускается большое количество моделей, поэтому подобрать устройство наиболее оптимальной мощности несложно.