ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 30.11.2023
Просмотров: 104
Скачиваний: 2
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Пусть Pk(t) обозначает вероятность того, что в момент t на объекте имеется к машин.
Тогда для 0 £ к £ п Pk(t + h) = Pk(t)P - за время h ни одна машина не выполнила погрузку; +Pk-1(t)P - одна машина прибыла и стала в очередь под погрузку; +Pk+l(t)P - одна машина выполнила погрузку +о(h).
Это позволяет выявить следующие соотношения:
P0(t + h) = P0(t)(1 - λnh) + P1(t)vh + o(h) для 0 < к < r;
Pk(t + h) = Pk(t)(1 - λ(n - k)h - vkh) + Pk-1(t)λ(п - к + 1)h + Pk+l(t)(k + 1)vh + o(h)
для r £ к < n,
Pk(t + h) = Pk(t)(1 - λ(n - k)h - rvh) + Pk-1(t)λ(n - к + 1)h + rvhPk+1(t) + o(h);
Pn(t + h) = Pn(t)(1 - rvh) + (п - 1)λPn-1(t)h + o(h).
Отсюда получаем систему дифференциальных уравнений
P₵k(t) = (-λ(п - к) + vk)Pk + λ(п - к+ 1)Рк-1 + v(k + 1)Pk+l для 0 < к < r;
P₵k(t) = - (λ(п - к) + rv)Pk + λ(п - к+ 1)Рк-1+ rvPk+l для r £ к < n;
P₵n = -rvPn(t) + Чп - λ(п - 1)Рп-1
При стационарном распределении и получаем систему уравнений, если положим P₵n(t) = 0.
Решение такой системы имеет следующий вид
где
При работе одного экскаватора (r = 1)
В качестве критерия эффективности, по которому можно выбирать оптимальное число машин для данного количества экскаваторов, необходим учет стоимости С0 - простоя экскаватора и С1 - стоимость простоя машин.
Зная вероятность различных состояний
Рк, определяем время простоя экскаваторов
а при r = 1 L = Р0.
Среднее время простоя машин
Для одного экскаватора (r = 1)
Средние издержки в единицу времени составят W(n) = C0L + С1М.
Вероятность того, что экскаватор простаивает при времени погрузки ρ = 0,2, когда число автосамосвалов п = 4, составляет L = 0,1914, а средний простой автосамосвалов М = 0,5810.
Технология разрушения зданий, как правило, предусматривает использование двух экскаваторов, один из которых производит разрушение верхних этажей с размещением боя на нижних этажах и созданием бермы для расположения второго экскаватора, который непосредственно осуществляет цикл погрузки боя и последовательного разрушения нижележащих этажей.
Исследование математической модели такой технологии показало, что на различных этажах разборки и перевозки продуктов разрушения среднее время простоя экскаваторов может достигать L = 0,5-0,7 при среднем числе простаивающего автотранспорта М = 0,3-0,35.
В зависимости от принятой технологии осуществляется расчет параметров среднего времени простоя машин, оптимизации их потребного количества и минимизации экономических потерь.
На рис. 13.9 приведен фрагмент технологической карты на демонтаж крупнопанельного дома при совместной работе двух экскаваторов. Он включает циклограмму работы каждого из экскаваторов и автосамосвалов в соответствии с технологической последовательностью демонтажа ячеек здания, фундаментов и отрывки котлована под новое здание.
Рис. 13.9. Технология демонтажа крупнопанельного дома при совместной работе двух экскаваторов
а - циклограмма технологического процесса демонтажа; б - технологическая последовательность демонтажа экскаватором «LIEBHERR R 942»; в - технологическая последовательность демонтажа экскаватором «HITACHI EX 400»
Для сноса зданий повышенной этажности из кирпича и бетона создан самый большой 100-тонный экскаватор японской фирмы Komatsu. Он оборудован многосекционной стрелой с гидроприводом, что позволяет вести работы на высоте 40 м. Экскаватор оснащен системой оповещения машиниста об опасном наклоне стрелы, с помощью установленной телекамеры он может наблюдать за процессом обрушения. Стрела экскаватора оснащена системой подачи и распыления воды, что снижает запыленность рабочей зоны, повышает обзор и обеспечивает нормальные условия работы.
На рис. 13.10 приведены рабочие моменты разрушения зданий различных конструктивных схем с использованием экскаваторов различных модификаций.
Рис. 13.10. Рабочие моменты сноса зданий
а - экскаватором Liebherr, оборудованным 4-звеньевой стрелой; б - то же, экскаватором Hitachi; в - то же, двумя экскаваторами; г - 100-тонным экскаватором Komatsu с пятизвеньевой стрелой
§ 13.5. Технология переработки продуктов разрушения
Количество строительных отходов при сносе и разборке зданий ежегодно возрастает. Так, в Москве с 2000 по 2005 г. объемы возросли с 200 тыс.м3 до 900 тыс.м3. Большая часть отходов вывозится на подмосковные полигоны и несанкционированные свалки, и только чуть более 10 % подвергаются переработке. Она является единственным экологически приемлемым способом утилизации строительных отходов.
При разрушении зданий образуются разнообразные отходы. Среди них 30-40 % - бетонные отходы, пригодные к дальнейшей переработке.
Получаемый в результате переработки бетона и кирпича щебень используется при изготовлении строительных материалов для возведения основания под дороги и фундаментные плиты, при благоустройстве территорий и т.п.
Исследования, проведенные в МГСУ, показали, что из вторичного сырья возможно получение бетонов классов В15-В20 с плотностью 2,18-2,20 т/м3 и расходом цемента 400- 450 кг/м3. Применение пластификаторов и других химических добавок способствует получению морозостойких сборных и монолитных конструкций.
Проблема переработки строительных отходов требует использования мобильного и высокопроизводительного дробильного оборудования, обеспечивающего получение материала требуемого качества.
Анализ эффективности использования различного дробильного оборудования показал, что для получения заполнителей для бетонов наиболее приемлемыми являются системы, оборудованные роторными или конусными дробилками, которые обеспечивают получение до 70 % фракций в диапазоне от 0,25 до 40 мм.
Переработка отходов железобетона и кирпича осуществляется на специальных полигонах или площадках массового сноса зданий, где размещаются мобильные дробилки, например фирмыPARKER PLAHT, с производительностью до 450 м3 в смену (рис. 13.11).
Рис. 13.11. Мобильные установки для переработки вторичного железобетона и строительных отходов фирмы PARKER
а - производительность до 200 т/ч с максимальным размером кусков до 400 мм; б - производительность до 400 т/ч с максимальным размером кусков до 1000 мм; в - на базе конусных дробилок производительность до 380 т/ч с максимальным размером кусков до 250 мм; г, д - рабочие моменты переработки отходов разборки зданий
Подача боя в дробилку осуществляется после сортировки экскаватором-погрузчиком на пневмоходу. Использование различного навесного оборудования обеспечивает дополнительное разрушение конструкций на требуемые габариты и подачу в загрузочный бункер дробилки.
Дробилка снабжена ленточным транспортером, по которому перемещаются в зону складирования материалы переработки в виде щебня. Как показала практика ведущей фирмы «Сатори», переработка отходов от разработки зданий в 2 раза дешевле, чем захоронение их на полигонах.
Получение материала в виде песка и щебня различной фракционности позволяет вторично использовать их при производстве бетонных и железобетонных изделий, а также для приготовления товарного бетона.
Следует отметить, что процесс переработки отходов требует создания технологических линий по разделению материалов из дерева, полимерных композиций и др., что является достаточно трудоемким и требующим механизации процессом.
Так, для извлечения битума от разборки плоских кровель разработана технология выпаривания, обеспечивающая отделение мастики от основы рулонных материалов. Она включает установку для размельчения, транспортер для подачи в технологическую емкость, сбора расплавленного битума в емкости. По мере наполнения основа извлекается из установки.
Разработаны установки цикличного и непрерывного действия, что позволяет получать высококачественный битумный материал для повторного использования.
Подобные технологии разработаны для утилизации дерева с измельчением, полимерных и других материалов от сноса жилых зданий.
Заключение
Реконструкция жилых зданий и застройки является актуальной, достаточно сложной и многоплановой проблемой. Интенсивный физический и моральный износ жилого фонда требует неотложных мер по восстановлению и повышению эксплуатационной надежности зданий.
В представленной работе авторы осветили круг технических и технологических вопросов, позволяющих решать ряд актуальных задач безопасной эксплуатации зданий:
диагностику технического состояния жилого фонда и прогнозирование безаварийного срока службы;
современные методы и технологии восстановления эксплуатационных характеристик зданий и повышения их энергоэффективности;
апробированы и исследованы прогрессивные технологии обновления жилого фонда, основанные на новых конструктивно-технологических и индустриальных методах решения основной задачи;
оценено влияние организационно-технологических факторов на экономическую эффективность реконструкции, модернизации и санации жилых зданий.
Особое внимание уделено методам и технологиям производства работ, базирующихся на широком использовании местных строительных материалов, облегченных конструкций и новых отечественных технологий.
Основная задача авторов состояла в том, чтобы донести до специалистов различного уровня прогрессивные методы и технологии восстановления и повышения эксплуатационной надежности, энергоэффективности и архитектурной выразительности жилых зданий и застройки.
Надстройка жилых домов является наиболее эффективным приемом воспроизводства жилищного фонда, поскольку не требует увеличения земельного участка и позволяет реализовать запасы несущей способности конструкций зданий. Это обстоятельство способствует решению Национального проекта «Доступное и комфортное жилье - гражданам России».
Исследованиями показано, что только замена плоских кровель панельных и кирпичных 5-9-этажек мансардными этажами может дать прирост площадей по себестоимости на 30- 40 % ниже нового строительства в объеме, сопоставимом с годовой программой строительного комплекса РФ.
Решение проблемы реконструкции жилого фонда требует создания специализированных проектных и строительных организаций, владеющих современными методами и технологиями производства работ, оснащенных специальными средствами механизации, оборудованием и инвентарем.
Комплексная реконструкция застройки требует разработки долгосрочных программ и государственной поддержки в части создания благоприятных условий по привлечению инвесторов для получения ощутимого прироста доступного жилья.
СПИСОК ЛИТЕРАТУРЫ
Арбеньев С.А. От электротермоса к синэнергобетонированию / ВГТУ. - Владимир, 1996.- 270 с.
Афанасьев А.А., Данилов Н.Н., Копылов В.Д. и др. Технология строительных процессов. - М.: ВШ, 2000. - 463 с.
Афанасьев А.А., Арутюнов С.Г., Афонин И.А. и др. Технология возведения полносборных зданий. - М.: АСВ, 2003. - 360 с.
Афанасьев А.А. Возведение зданий и сооружений из монолитного железобетона. - М.: Стройиздат, 1990. - 380 с.