Файл: При обучении нумерации в пределах 1000 учащиеся знакомятся с сотней новой счетной единицей, учатся считать сотнями, как раньше считали единицами и десятками, узнают десятичный состав чисел в пределах тысячи.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 66

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Отрабатывая запись и счет по таблицам каждой круглой сотни (от 100 до 200, от 200 до 300 и т. д.), учащиеся выделяют четные и нечетные числа, числа, оканчивающиеся нулем. Внутри каждой сотни ведется счет в прямом и обратном порядке как единицами, десятками, так и равными числовыми группами. Начинать счет можно единицами (101, 102,..., ПО), затем продолжить его десят­ками (110, 120,..., 200). Счет от 1 до 1000 проводится также разрядными единицами (1, 10, 100) или равными числовыми груп­пами. Например: «Считай сотнями: 100, 200, 300, 400,...»; «Счи­тай, прибавляя по 50 (равными числовыми группами): 450, 500, 550, 600»; «Считай, присчитывая по единице: 601, 602,..., 620»; «Считай, прибавляя по 5 (25): 625, 630, 635, 640, 645, 650, 675, 700» и т. д.

Учитель может предложить учащимся считать на пособиях: палочках, брусках и кубиках арифметического ящика, счетах. При счете конкретных предметов учащиеся реальнее представляют себе переход к новому десятку, к новой сотне. Например, надо набрать из палочек число 309. Ученик должен взять 3 сотни

палочек и еще 9 палочек, присчитать еще одну единицу, заменить 10 палочек десятком палочек (т.е. связать в пучок) и считать дальше, прибавляя по одной палочке до 320.

Так же проводится счет в обратном порядке. Ученик берет 6 сотен палочек и ведет отсчет по 1: он берет (занимает) сотню палочек, развязывает этот пучок и получает 5 сотен и 10 десятков палочек. Затем развязывает десяток палочек и отнимает 1 палоч­ку. Остается 5 сотен 9 десятков и 9 единиц, т. е. 599.

Аналогичная работа проводится и на счетах. Это позволяет отработать переход к новому десятку, к новой сотне, размен де­сятков и сотен. Важно, чтобы учащиеся и на примерах могли показать образование последующего или предыдущего числа в числовом ряду путем прибавления или вычитания единицы:

345+1=346 199+1=200 999+1 = 1000

348-1=347 500-1=499 1000-1= 999

Большое внимание при закреплении нумерации необходимо уделить анализу чисел, их сравнению.

Трехзначное число учащиеся учатся записывать по-разному: 234 — 2 сот. 3 дес. 4 ед., 234=200+30+4. Такая запись способствует усвоению десятичного состава чисел. Полезны и обратные задания: за­писать число, которое состоит из 7 сот. 3 дес. (7 сот. 3 дес. = 730), 700+5=705 и т. д.

Необходимо проводить упражнения на сравнение чисел: на­звать число на единицу больше (меньше) данного, увеличить (уменьшить) число на 1 единицу, на 1 десяток или на 1 сотню и записать его. Надо научить учащихся сравнивать числа, которые отличаются лишь цифрами, обозначающими число единиц, десят­ков или сотен, используя разностное, а где возможно, и краткое сравнение. Например:


— Сравните два числа: 124 и 128. Чем они отличаются? В чем их сходство? На сколько одно число больше другого?

— Сравните 124 и 24; 124 и 134; 275 и 375; 4 и 40; 4 и 400; 40 и 400; 2, 20, 200; 1, 10, 100, 1000.

Необходимо учить детей сравнению чисел с высших разрядов. Если в одном числе сотен больше, чем в другом, то это число больше (на низшие разряды уже можно не смотреть); при равен-стве сотен надо сравнить десятки: то число будет больше, в котором число десятков больше, и т. д.

При сравнении чисел очень важно научить детей сравнивать разрядные единицы 1, 10, 100, 1000 и разрядные числа с одинако­вым числом единиц высших разрядов, например: 4, 40, 400.

Сот.

Дес.

Ед.

 

 

 

 

 

 

 

 

 

Для сравнения эти числа записывают в разрядную сетку и выясняют, что каждое последующее число больше предыдущего в 10 раз и записано на месте следующего разряда:

 

Ед. тыс.

Сот.

Дес.

Ед.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Если 4 увеличить в 10 раз, то получится 40 (4*10= =40=4 дес). Чтобы записать 40 в разрядную сетку, нужно цифру 4 поставить на второе место.

Если 40 увеличить в 10 раз, то получится 4 дес. *10= =40 дес. =4 сотни. Цифру 4 надо записать на третьем месте в разрядной сетке.

Эти упражнения, если они выполняются систематически, по­зволяют учащимся сделать вывод о свойстве десятичной системы счисления: каждый последующий разряд больше предыдущего в 10 раз, и наоборот.

Весьма важным при изучении нумерации является различение учащимися количества разрядных единиц в числе и общего коли­чества единиц. Учащиеся должны понимать, что на первом месте справа стоят единицы, на втором — десятки, на третьем — сотни и т. д., и уметь отвечать на такие вопросы: «Покажи и назови,

сколько единиц в числе, сколько десятков в числе. Покажи, где стоят в числе 348 десятки, единицы. Назови, сколько их».

Важно, чтобы дети научились определять, сколько всего еди­ниц (десятков, сотен) в числе. Отработать это понятие гораздо труднее, тем более что учащиеся слабо дифференцируют сходные

по звучанию вопросы: «Сколько единиц в числе? Сколько всего

единиц в числе?» Опыт показывает, что целесообразнее вначале

показать учащимся определение общего количества десятков в

числе. Например: «Сколько десятков в числе 20? Сколько десят-

ков содержится в числе 200? Как это узнать? (В одной сотне

10 десятков. В двух сотнях 10 дес.х2=20 дес.) Сколько десятков

в числе 220? (200 — это 20 дес; 20 — это 2 дес; 220 — это

22дес; 348 — это 30 дес да 4 дес — всего 34 десятка.) Чтобы

узнать, сколько всего десятков в числе, надо закрыть единицы и

прочитать оставшееся число».

Затем проводятся упражнения на дифференциацию вопросов: «Сколько всего десятков в числе? Сколько десятков в числе?»

На этом этапе изучения нумерации целесообразно познакомить учащихся с классом единиц. Учитель рассказывает, что единицы, десятки и сотни объединяются (составляют) в класс единиц — это первый класс. Позже, когда они будут знакомиться с числами до 1 миллиона, они узнают о других разрядах и классах.

I класс — единиц







Сотни

Десятки

Единицы

 

 

 

 

 

 

 

 

 

Разрядную таблицу учитель дополняет до таблицы классов и разрядов, которую учащиеся чертят в тетрадях и вписывают в нее трехзначные числа. Анализируют числа по десятичному составу, называя не только разряды, но и класс. Такого характера упраж­нения являются пропедевтикой понимания сущности десятичной системы счисления. Полезно при записи трехзначных чисел под диктовку без таблицы предварительно ставить три точки и запи­сывать каждую цифру разряда над соответствующей этому разря­ду точкой. Например, учитель просит записать число 325, спраши­вает, сколько цифр в этом числе. Просит школьников по­ставить три точки и над точка­ми записать число 325. Особен­но такой прием помогает уча­щимся при записи числа с нуля­ми в середине или в конце (507, 460), как известно, умственно отсталые школьники при записи таких чисел пропускают нули, вписывают лишние или переставля­ют. Например, вместо 507 записывают: 5007, 570.


Чтобы определить, сколько всего единиц в числе, рассуждения проводятся так: «В числе 486 4 сотни содержат 400 единиц, 8 десятков содержат 80 единиц и еще 6 единиц. Всего в числе 486 единиц».

   С темой «Нумерация» тесно связано изучение метрической cис-темы мер длины и массы. Знакомство с килограммом и километ-ром, раздробление их соответственно в граммы и метры, счет по 100 г, по сотне метров, изучение соотношения мер позволяют еще раз закрепить счет разрядными единицами в пределах 1000 и соотношение между ними.

Работая с опережением, учитель, закрепляя работу над нумера-цией в 5-м классе, может познакомить учащихся с объединением известных им трех разрядов (единиц, десятков, сотен) в класс единиц и начинать анализ трехзначного числа с выделения клас­са, а потом разрядов, например: 475 — трехзначное число, состо-ит из класса единиц, 3 разрядов (единицы, десятки, сотни).

С темой «Нумерация» тесно связано решение примеров на все четыре арифметических действия с круглыми сотнями вида 300+100=400, 500-200=300, 200*2=400, 400:4=100.

На знании свойств натурального ряда чисел основано реше-ние примеров вида 432+1=433, 538-1=537, 599+1=600, 400-1=399.

МЕТОДИКА ИЗУЧЕНИЯ АРИФМЕТИЧЕСКИХ ДЕЙСТВИЙ В ПРЕДЕЛАХ 1000

Все действия в пределах 1000 без перехода через разряд уча-щиеся выполняют приемами устных вычислений с записью в строчку, а с переходом через разряд — приемами письменных вычислений с записью в столбик. Важно постепенное нарастание трудности при решении арифметических примеров. Каждый после­дующий случай в решении примеров должен опираться на знание предыдущих случаев. Непреодолимые трудности для умственно отсталого ребенка могут возникнуть при решении трудных случа­ев, если пропустить одно из звеньев в цепи решения примеров. Поэтому очень важно соблюдать последовательность в выборе примеров, учитывая их нарастающую степень трудности, и тща­тельно отрабатывать каждый случай.