Файл: Определители. Основные определения. Вычисление определителей третьего порядка.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 33

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Ax+By+C=0 есть ур-е некоторой прямой линии на плоскости Оxy. Это ур-е называется общим ур-ем прямой. Ур-е прямой, заданное в общем виде, не даёт представления о расположении прямой на плоскости, но из него легко находятся все основные хар-ки прямой: 1)k= -A/B; 2)начальная ордината b= - C/B; 3) отрезки, отсекаемые прямой на осях ординат: Ax+By+C=0 /(-C)

-Ax/C-By/C=1

a= - C/A; b= - C/B.

3 (34). Уравнение прямой, проходящей через точку М (x, y) перпендикулярно нормальному вектору n (A, B).

4 (35). Уравнение прямой, проходящей через точку М (x, y) параллельно направляющему вектору q (l, m).

5 (36). Уравнение прямой, проходящей через две точки М 1(x1, y1) М2 (x2, y2).

Это ур-е является частным случаем ур-я пучка прямых. Прямая задана 2-мя лежащими на ней точками М1 (x1;y1) и M2(x2;y2), x1x2, y1y2(при равенстве - применение ур-япрямой, проход.ч.з 2 точки, невозможно). Для составления ур-я прямой М1М2 необходимо ур-е пучка прямых, проходящих ч/з точку М1: y-y1=k(x-x1). Т.к. точка M2(x2;y2) лежит на данной прямой, то чтобы выделить её из пучка, подставим в ур-е пучка прямых координаты М2 и найдём угловой коэффициент: k=y2-y1/x2-x1.

Теперь ур-е прямой, проходящеё через 2 заданные точки, примет вид: y-y1=(x-x1)  y2-y1/x2-x1 y-y1/y2-y1=x-x1/x2-x1.

(др. способ: после ур-я углового коэф-та вывожу: tg =M2N/M1N, M2N=y2-y1; M1N=x2-x1 tg =K=y2-y1/x2-x1. Подставим это ур-е в ур-е пучка прямых: y-y1=(x-x1)y2-y1/

/ x2-x1 ( y2-y1) y-y1/y2-y1=x-x1/x2-x1. )

6 (37). Уравнение прямой в отрезках.

П рямая задана отрезками, которые она отсекает на осях координат. Найду ур-е прямой по заданным отрезкам а0 и b0, отсекаемым на осях координат. Используя ур-е прямой, проходящей через точки А(а;0) и В(0;b) - y-y1/y2-y1=x-x1/x2-x1—ур-е прямой в отрезках примет вид: y-0/b-0= x-a/0-a или: -ay= b(x-a), -ay-bx+ab=0 ab; -y/b-x/a+1=0 (-1);

x/a+y/b=1. А-отрезок, отсекаемый на оси Оx; В-отрезок на оси Оy. Тогда прямую можно определить как прямую, заданную двумя точкамиA(a;b) на осиOx и B(0:b) на оси Oy. Подставив координаты этих точек в ур-е прямой, проходящей через две заданные точки, получим ур-е прямой в отрезках.

7 (38). Уравнение прямой с угловым коэффициентом.


Угловой коэффициент прямой- одна из характеристик расположения прямой на плоскости; её наклон относительно оси Оx (за угол наклона принимается , отсчитываемый от оси Оx против движения часовой стрелки до этой прямой); tg угла наклона этой прямой к оси Оx. Если k, то  -острый; если =0, то k=0, прямая параллельна оси Оx; если =90, то прямая параллельна оси Оy, k-не существует. Пусть положение прямой в прямоугольной системе координат задано величиной отрезка, отсекаемого этой прямой на оси Оy и k этой прямой. Возьмём произвольную точку М (;). Тогда tg угла  наклона прямой найдём из прямоугольного треугольника МВN: tg  = MN/NB= y-b/x. Введём угловой коэффициент прямой k=tg ; получим k=y-b/x. y=kx+b - ур-е прямой с угловым коэффициентом. В зависимости от величин k и b возможны следующие варианты расположения прямой: 1) при в0, прямая пересекает ось Оx выше начала координат; при в0, прямая  Оx ниже начала координат. 2)при k0, прямая образует острый угол с Оx; при k0,-тупой угол; при k=0-параллельна оси Оx; при k=-перпендикулярна Оx.

8 (39). Уравнение прямой, проходящей через данную точку М (x, y) с данным угловым коэффициентом k.

9 (40). Нормальное уравнение плоскости.

Нормальное ур-е плоскости: x(Cos) +y(Cos)+z(Cos)+=0, где Cos , Cos , Cos -направляющие Cos –сы нормального вектора; -расстояние от начала координат до плоскости. Общее ур-е приводится к нормальному виду путём умножения на нормирующий множитель.

10 (41). Условие параллельности и перпендикулярности прямых.

1
2)
)Если прямые параллельны, то они образуют с осью OX одинаковые углы. Поэтому угловые коэф-ты k1 и k2 этих прямых равны. Обратно, если k1= k2, то углы наклона прямых к оси OX одинаковы, откуда следует, что данные прямые параллельны. Условием параллельности 2-х прямых яв-ся равенство их угловых коэффициентов. 2)Формула tg=k2-k1/1+k1k2 определяет угол  между пересекающимися прямыми через tg. Если =90, то эта формула оказывается неприменимой, т.к. tg=90 не существует. Если прямые взаимно перпендикулярны, то 2=1+90, откуда tg2= tg (1+90)= -Сtg1. tg2= - 1/ tg1. Заменяя tg1 и Сtg2 через k1 и k2, находим: k2= 1/ k1 или 1+ k1k2=0. Обратно, пусть k2= 1/ k1, это значит, что tg2= -1/tg1 откуда получаем 2=1+90. Следовательно, угол между двумя данными прямыми равен 90, т.е. прямые взаимно перпендикулярны.

Условие перпендикулярности 2-х прямых состоит в том, что угловые коэф-ты этих прямых обратны по абсолютной величине и противоположны по знаку: k2= -1/ k1.

11 (42). Угол между прямыми.

Угол  между 2-мя параллельными прямыми равен 0, тогда tg=0; с другой стороны, из условия параллельности, т.е. из равенства k1= k2, следует, что k1- k2=0 и по формуле tg=k2-k1/1+k1k2-угол между 2-мя пересекающимися прямыми-получаем: k1-k2/1+k1k2=0.

12 (43). Плоскость в пространстве. Виды уравнений плоскости.

Существуют следующие виды ур-ий плоскости: 1) Общее ур-е плоскости: Ax+By+Cz+D=0, где n=(A,B,C)- нормальный вектор плоскости. 2) ур-е плоскости, проходящей через точку М1(x1;y1;z1) перпендикулярно вектору n=(A,B,C): A(x-x1)+B(y-y1)+C(z-z1)=0. 3)Ур-е плоскости в отрезках: x/a+y/b+z/c=1, где a,b,c-величины отрезков, отсекаемых плоскостью на осях координат. 4)Нормальное ур-е плоскости: x(Cos) +y(Cos)+z(Cos)+=0, где Cos , Cos , Cos -направляющие Cos –сы нормального вектора; -расстояние от начала координат до плоскости. Общее ур-е приводится к нормальному виду путём умножения на нормирующий множитель. 5)Ур-е плоскости, проходящей через три заданные точки: М1(x1;y1;z1), М2(x2;y2;z2), М3(x3;y3;z3).

x-x1 y-y1 z-z1

x2-x1 y2-y1 z2-z1 =0.

x3-x1 y3-y1 z3-z1

13 (44). Условие параллельности и перпендикулярности плоскостей.

14 (45). Прямая в пространстве. Виды уравнений прямой в пространстве.

Взаимное ур-е 2-х прямых в пространстве: а) пусть прямые заданы своими канонич.ур-ями: x-x1/L1=y-y1/m1=z-z1/n1,

x-x2/L2=y-y2/m2=z-z2/n2; где q 1(L1;m1;n1), q2 (L2;m2;n2)- направляющие векторы. Тогда прямые параллельны, если параллельны их направляющие векторы:q1 q2  L1/L2=m1/m2=n1/n2. б) пусть прямые заданы аналогично случаю а). Две прямые  тогда и только тогда, когда их направляющие векторы перпендикулярны (q1q2).

L1L2+m1m2+n1n2=0. Существуют следующие виды ур-ий прямой в пространстве: 1)Общее ур-е прямой: прямая задаётся как линия пересечения 2-х плоскостей.

A1x+B1y+C1z+D1=0

A2x+B2y+C2z+D2=0, где А1, В1,С1-непропорциональные коэффициентам А2, В2, С2.

2)Ур-е прямой, проходящей через две точки (выводится аналогично ур-ю прямой на плоскости):

x-x2/x2-x1=y-y2/y2-y1=z-z2/z2-z1.

3)Каноническое уравнение прямой в пространстве (ур-е прямой, проходящей ч/з заданную точку М0 (x0;y0;z0), параллельно направляющему вектору q (l;m;n)):

x-x0/l=y-y0/m=z-z0/n.

4)Параметрическое ур-е прямой: прямая задаётся при помощи точки, лежащей на прямой, и направляющего вектора. М
0(x0;y0;z0), q (l;m;n). x=x0+lt

y=y0+mt

 z=z0+nt, t-параметр.

5)Угол между 2-мя прямыми в пространстве – это, практически, угол между их направляющими векторами:

Cos=L1L2+m1m2+n1n2/ L12 +m12+n12  L22+m22+n22 .

15 (46). Взаимное расположение прямой и плоскости.

1)Угол между прямой и плоскостью вычисляется по формуле: Cos=Al+Bm+CnA2+B2+C2 l2+m2+n2. Где l, m, n- координаты направляющего вектора прямой; A, B, C- координаты n. В этом случае прямая может быть задана каноническим или параметрическим ур-ем прямой, а плоскость – общим. 2)Прямая и плоскость в пространстве параллельны: тогда и только тогда, когда скалярное произведение направляющего вектора прямой и нормального вектора плоскости равно 0. n(A,B,C)q (l;m;n) Ax+By+Cz+D=0 (общее ур-е плоскости); x-x0/l=y-y0/m=z-z0/n. Т.к. n q=0 Al+Bm+Cn=0. 3)прямая и плоскость в пространстве перпендикулярны: тогда и только тогда, когда направляющий вектор прямой и нормальный вектор плоскости коллинеарные (параллельны). Два вектора коллинеарны тогда и только тогда, когда их векторное произведение равно 0 или координаты пропорциональны. Т.к. n q=0, А/l=B/m=C/n. 4)условия, при которых прямая принадлежит плоскости: а)скалярное произведениеn q=0, т.е. Al+Bm+Cn=0; б) при подстановке координат точки, лежащей на прямой, в общее ур-е плоскости получается верное равенство Ax0+By0+Cz0+D=0

x=x0+lt,

y=y0+mt,

z=z0+nt (параметрич. ур-е прямой).

5)точка пересечения прямой и плоскости: для того, чтобы найти координаты точки пересечения прямой и плоскости в пространстве, необходимо совместно решить систему, составленную из ур-ий: x-x0/l=y-y0/m=z-z0/n (канонич. ур-е прямой), Ax+By+Cz+D=0 (общее ур-е плоскости). Для того,чтобы решить такую систему необходимо перейти от канонич. ур-я к параметрическому: x=x0+lt,

y=y0+mt,

z=z0+nt (параметрич. ур-е прямой)

 Ax+By+Cz+D=0.

16 (47). Кривые второго порядка. Окружность.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени относительно текущих декартовых координат. В общем виде ур-е принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа. Кроме того, по крайней мере, одно из этих чисел 0. Окружность-множество точек, равно удалённых от данной точки (центра). Если обозначить через R радиус окр., а через С(x0,y0) –центр окружности, то исходя из этого определения :




Возьмём на окр. произвольную точку М (x,y). По определению, расстояние СМ= R. Выражу СМ ч/з координаты заданных точек: СМ = (x-x0)2+(y-y0)2 = R R2=(x-x0)2+(y-y0)2 -ур-е окр. С центром в точке С(x0,y0). Это ур-е называется нормальным ур-ем окружности. Ax2+2Bxy+Cy2+2Dx+2Ey+F=0-ур-е второй степени с 2-мя переменными в общем виде. Ax2++Cy2 =-кривая второго порядка, где А,В,С не равны 0 одновременно, т.е. А2220. x2+y2-2x0x-2y0y+x02+y02-R2=0; B=0, A/1=C/1A=C0 (т.к. A2+B2+C20, B=0). Получаем ур-е: Ax2+Ay2+Dx+Ey+F=0- общее ур-е оркужности. Поделим обе части этого ур-я на А0 и, дополнив члены, содержащие x,y, до полного квадрата, получаем: (x+(D/2A))2+(y+(E/2A))2=(D2+E2-4AF)/4A2. Cравнивая это ур-е с нормальным ур-ем окр., можно сделать вывод, что ур-е: Ax2+Bxy+Cy2+Dx+Ey+F=0-ур-е действительной окружности, если:1)А=С; 2)В=0; 3) D2+E2-4AF0. При выполнении этих условий центр окр. расположен в точке О(-D/2A;-E/2A), а её радиус R=D2+E2-4AF/2A.

17 (48). Кривые второго порядка. Эллипс.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени относительно текущих декартовых координат. В общем виде ур-е принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа. Кроме того, по крайней мере одно из этих чисел 0. Эллипс (кривая эллиптического типа) - кривая 2-го порядка, где коэффициенты А и С имеют одинаковые знаки.



18 (49). Кривые второго порядка. Гипербола.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени относительно текущих декартовых координат. В общем виде ур-е принимает вид: Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где A, 2B, C, 2D, 2E, F- действительные числа. Кроме того, по крайней мере одно из этих чисел 0. Кривая 2-го порядка называется гиперболой (или кривой гиперболического типа), если коэффициенты А и С имеют противоположные знаки, т.е. АС0. Кривые 2го порядка описываются с помощью общего ур-я:

Ax2+2Bxy+Cy2+2Dx+2Ey+F=0, где



а) Каноническое ур-е параболы: y2=2px или y=ax2

19 (50). Кривые второго порядка. Парабола.

Кривой 2-го порядка называется линия, определяемая уравнением 2-ой степени относительно текущих декартовых координат. В общем виде ур-е принимает вид: Ax