Файл: Я проходил эксплуатационную производственную практику в ооо гипэлектро.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.11.2023

Просмотров: 107

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


3. Чувствительность.

Для того чтобы защита реагировала на отклонения от нормального режима, которые возникают при к. з. (увеличение тока, снижение напряжения и т. п.), она должна обладать определенной чувствительностью в пределах установленной зоны ее действия. Каждая защита должна отключать повреждения на том участке, для защиты которого она установлена, и, кроме того, должна действовать при к. з. на следующем, втором участке, защищаемом следующей защитой. Резервирование следующего участка является важным требованием. Одновременный отказ защиты на двух участках маловероятен, и поэтому с таким случаем не считаются.

Каждая защита должна действовать не только при металлическом к. з., но и при замыканиях через переходное сопротивление, обусловливаемое электрической дугой. Чувствительность защиты должна быть такой, чтобы она могла подействовать при к. з. в минимальных режимах системы, т. е. в таких режимах, когда изменение величины, на которую реагирует защита (ток, напряжение и т. п.), будет наименьшей. Например, если на станции будет отключен один или несколько генераторов, то ток к. з. уменьшится, но чувствительность защит должна быть достаточной для действия и в этом минимальном режиме.

Чувствительность защиты принято характеризовать коэффициентом чувствительности . Для защит, реагирующих на ток к. з.,



где – минимальный ток к. з.; – наименьший ток, при котором защита начинает работать (ток срабатывания защиты).

4. Надежность.

Требование надежности состоит в том, что защита должна безотказно работать при к. з. в пределах установленной для нее зоны и не должна работать неправильно в режимах, при которых ее работа не предусматривается. Требование надежности является весьма важным. Отказ в работе или неправильное действие какой-либо защиты всегда приводит к дополнительным отключениям, а иногда к авариям системного значения.

Надежность защиты обеспечивается простотой схемы, уменьшением в ней количества реле и контактов, простотой конструкции и качеством изготовления реле и другой аппаратуры, качеством монтажных материалов, самого монтажа в контактных соединений, а также уходом за ней в процессе эксплуатации.

3.2. Элементы защиты, реле и их разновидности
Обычно устройства релейной защиты состоят из нескольких реле, соединенных друг с другом по определенной схеме. Реле представляет собой автоматическое устройство, которое приходит в действие (срабатывает) при определенном значении воздействующей на него входной величины.

В релейной технике применяются реле с контактами – электромеханические, бесконтактные — на полупроводниках или на ферромагнитных элементах. У первых при срабатывании замыкаются или размыкаются контакты. У вторых – при определенном значении входной величины х скачкообразно меняется выходная величина у, например напряжение.

Каждый комплект защиты и его схема подразделяются на две части: реагирующую и логическую. Реагирующая (или измерительная) часть является главной, она состоит из основных реле, которые непрерывно получают информацию о состоянии защищаемого элемента и реагируют на повреждения или ненормальные режимы, подавая соответствующие команды на логическую часть защиты. Логическая часть (или оперативная) является вспомогательной, она воспринимает команды реагирующей части и, если их значение, последовательность и сочетание соответствуют заданной программе, производит заранее предусмотренные операции и подает управляющий импульс на отключение выключателей. Логическая часть может выполняться с помощью электромеханических реле или схем с использованием электронных приборов – ламповых или полупроводниковых.

В соответствии с этим подразделением защитных устройств реле также делятся на две группы: на основные, реагирующие на повреждения, и вспомогательные, действующие по команде первых и используемые в логической части схемы.

Признаком появления к. з. могут служить возрастание тока, понижение напряжения и уменьшение сопротивления защищаемого участка, характеризуемого отношением напряжения к току в данной точке сети. Соответственно этому в качестве реагирующих реле применяют: токовые реле, реагирующие на величину тока; реле напряжения, реагирующие на величину напряжения, и реле сопротивления, реагирующие на изменение сопротивления. В сочетании с указанными реле часто применяются реле мощности, реагирующие на величину и направление (знак) мощности к. з., проходящий через место установки защиты.

Реле, действующие при возрастании величины

, на которую они реагируют, называются максимальными, а реле, работающие при снижении этой величины, называются минимальными.

Для защит от ненормальных режимов, так же как и для защит от к. з., используются реле тока и напряжения. Первые служат в качестве реле, реагирующих на перегрузку, а вторые — на опасное повышение или снижение напряжения в сети. Кроме того, применяется ряд специальных реле, например, реле частоты, действующие при недопустимом снижении или повышении частоты; тепловые реле, реагирующие на увеличение тепла, выделяемого током при перегрузках, и некоторые другие.

К числу вспомогательных реле относятся: реле времени, служащие для замедления действия защиты; реле указательные – для сигнализации и фиксации действия защиты; реле промежуточные, передающие действие основных реле на отключение выключателей и служащие для осуществления взаимной связи между элементами защиты.

Каждое реле можно подразделить на две части: воспринимающую и исполнительную. Воспринимающий элемент в электромеханических конструкциях имеет обмотку, которая питается током или напряжением защищаемого элемента в зависимости от типа реле (токовые или напряжения).

Реле мощности и реле сопротивления имеют две обмотки (тока и напряжения). Через обмотки реле воспринимает изменение той электрической величины, на которую оно реагирует.

Исполнительный элемент электромеханического реле представляет собой подвижную систему, которая перемещаясь под воздействием сил, создаваемых воспринимающим элементом, действует на контакты реле, заставляя их замыкаться или размыкаться.

Имеются также реле, в которых подвижная система действует непосредственно механическим путем на отключение выключателя, такие реле не имеют контактов.

Обмотки реле могут включаться на ток и напряжение сети непосредственно или через измерительные трансформаторы тока и напряжения. Реле первого типа называются первичными, второго типа – вторичными. Наибольшее распространение имеют реле вторичные, преимущества которых по сравнению с первичными состоят в том, что они изолированы от высокого напряжения, располагаются на некотором расстоянии от защищаемого элемента, в удобном для обслуживания месте и могут выполняться стандартными на одни и те же номинальные токи 5 или 1 А и номинальные напряжения 100 В независимо от напряжения и тока первичной цепи защищаемого элемента.


Достоинством первичных реле является то, что для их включения не требуется измерительных трансформаторов, источников оперативного тока и контрольного кабеля. Первичные реле находят применение на электродвигателях, мелких трансформаторах и линиях малой мощности в сетях 6 – 10 кВ,
т. е. там, где защита осуществляется по простейшим схемам посредством реле тока и напряжения и не требует большой точности. Во всех остальных случаях применяются вторичные реле.

Существует два способа воздействия защиты на отключение выключателя: прямой и косвенный. Реле срабатывает, когда электромагнитная сила, создаваемая обмоткой реле, станет больше силы противодействующей пружины. При срабатывании реле его подвижная система воздействует непосредственно (прямо) на расцепляющий рычаг выключателя, после чего выключатель отключается под действием пружины. Реле прямого действия устанавливаются непосредственно в приводе выключателя, поэтому их часто называют встроенными.

В защите с вторичным реле косвенного действия при срабатывании реле его контакты замыкают цепь обмотки электромагнита, называемого катушкой отключения выключателя. Под действием напряжения, подводимого к зажимам этой цепи от специального источника, в катушке отключения появляется ток, сердечник катушки отключения преодолевает сопротивление пружины и, втягиваясь, освобождает защелку, после чего выключатель отключается под действием пружины.

После отключения выключателя ток в обмотке исчезает, и контакты реле размыкаются. Чтобы облегчить их работу по размыканию цепи, в которой проходит ток катушки отключения, предусмотрен вспомогательный блокировочный контакт, который размывает цепь катушки отключения еще до того, как начнут размыкаться контакты реле.

Для защиты с реле косвенного действия необходим вспомогательный источник напряжения – источник оперативного тока. Защита с реле прямого действия не требует источника оперативного тока, но реле этой защиты должны развивать большие усилия для того, чтобы непосредственно расцепить механизм выключателя. Поэтому реле прямого действия не могут быть очень точными и имеют большое потребление мощности.

Усилия, развиваемые реле косвенного действия, могут быть незначительными, поэтому они отличаются большей точностью и малым потреблением. Кроме того, в защитах, которые состоят из нескольких реле, взаимодействие между ними проще осуществляется при помощи оперативного тока, а не механическим путем. Поэтому наиболее широко применяется защита со вторичными реле косвенного действия.


3.3. Источники оперативного тока
Оперативным током называется ток, питающий цепи дистанционного управления выключателями, оперативные цепи релейной защиты, автоматики, телемеханики и различные виды сигнализации.

Питание оперативных цепей и особенно тех ее элементов, от которых зависит отключение поврежденных линий и оборудования, должно отличаться особой надежностью. Поэтому главное требование, которому должен отвечать источник оперативного тока, состоит в том, чтобы во время к. з. и при ненормальных режимах в сети напряжение источника оперативного тока и его мощность имели достаточную величину как для действия вспомогательных реле защиты и автоматики, так и для надежного отключения и включения соответствующих выключателей.

Для питания оперативных цепей применяются источники постоянного и переменного тока.

Постоянный оперативный ток

В качестве источника постоянного тока используются аккумуляторные батареи с напряжением 110 – 220 В, а на небольших подстанциях 24 – 48 В, от которых осуществляется централизованное питание оперативных цепей всех присоединений. Для повышения надежности сеть постоянного тока секционируется на несколько участков, имеющих самостоятельное питание от сборных шин батареи.

Самым ответственным участком являются цепи защиты, автоматики и катушек отключения, питаемые от шинок управления ШУ. Вторым очень важным участком являются цепи катушек включения, питаемые от отдельных шинок ШВ вследствие больших токов (400—500 А), потребляемых катушками включения масляных выключателей. Третьим, менее ответственным участком является сигнализация, питающаяся от шинок ШC. Остальные потребители постоянного тока (аварийное освещение, двигатели собственных нужд) питаются по отдельной сети. Защита оперативных цепей от к. з. осуществляется предохранителями или специальными автоматами, реагирующими на увеличение тока.

Аккумуляторные батареи обеспечивают питание оперативных цепей в любой момент времени с необходимым уровнем напряжения и мощности независимо от состояния основной сети и поэтому являются самым надежным источником питания. В то же время аккумуляторные батареи значительно дороже других источников оперативного тока, для них требуются зарядные агрегаты, специальное помещение и квалифицированный уход. Кроме того, из-за централизации питания создается сложная, протяженная и дорогостоящая сеть постоянного тока.

Переменный оперативный ток