Файл: Полупроводниковые диоды Полупроводниковый диод.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 24

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Полупроводниковые диоды

Полупроводниковый диод самый простой полупроводниковый прибор, состоящий из одного PN перехода. Основная его функция - это проводить электрический ток в одном направлении, и не пропускать его в обратном. Состоит диод из двух слоев полупроводника типов N и P (Рисунок 1.2.1)



Рисунок 1.2.1 Строение диода

На стыке соединения P и N образуется PN-переход. Электрод, подключенный к P, называется анод. Электрод, подключенный к N, называется катод. Диод проводит ток в направлении от анода к катоду, и не проводит обратно.

Диод в состоянии покоя.

Диод находится в состоянии покоя, когда ни к аноду, ни к катоду не подключено напряжения (Рисунок 1.2.2).



Рисунок 1.2.2 Диод в состоянии покоя

В части N имеются в наличии свободные электроны – отрицательно заряженные частицы. В части P находятся положительно заряженные ионы – дырки. В результате, в том месте, где есть частицы с зарядами разных знаков, возникает электрическое поле, притягивающее их друг к другу.

Под действием этого поля свободные электроны из части N дрейфуют через PN переход в часть P и заполняют некоторые дырки. В итоге получается очень слабый электрический ток, измеряемый в наноамперах. В результате, плотность вещества в P части повышается и возникает диффузия (стремление вещества к равномерной концентрации), толкающая частицы обратно на сторону N.

Обратное включение диода.

Теперь рассмотрим, как у полупроводникового диода получается выполнять свою основную функцию – проводить ток только в одном направлении. Подключим источник питания - плюс к катоду, минус к аноду (рисунок 1.2.3)



Рисунок 1.2.3 Обратное включение диода

В соответствии с силой притяжения, возникшей между зарядами разной полярности, электроны из N начнут движение к плюсу и отдалятся от PN перехода. Аналогично, дырки из P будут притягиваться к минусу, и также отдалятся от PN перехода. В результате, плотность вещества у электродов повышается. В действие приходит диффузия и начинает толкать частицы обратно, стремясь к равномерной плотности вещества.


Как мы видим, в этом состоянии диод не проводит ток. При повышении напряжения, в PN переходе будет все меньше и меньше заряженных частиц.

Прямое включение диода.

Меняем полярность источника питания – плюс к аноду, минус к катоду.

(Рисунок 1.2.4)



Рисунок 1.2.4 Прямое включения диода

В таком положении, между зарядами одинаковой полярности возникает сила отталкивания. Отрицательно заряженные электроны отдаляются от минуса и двигаются сторону pn перехода. В свою очередь, положительно заряженные дырки отталкиваются от плюса и направляются навстречу электронам. PN переход обогащается заряженными частицами с разной полярностью, между которыми возникает электрическое поле – внутреннее электрическое поле PN перехода. Под его действием электроны начинают дрейфовать на сторону P. Часть из них рекомбинируют с дырками (заполняют место в атомах, где не хватает электрона). Остальные электроны устремляются к плюсу батарейки. Через диод пошел ток ID.


1 Выпрямительные диоды

Выпрямительный диод — это полупроводниковый диод, предназначенный для преобразования переменного тока в постоянный.

В основе работы выпрямительных диодов лежит свойство односторонней проводимости рn-перехода, которое заключается в том, что последний хорошо проводит ток (имеет малое сопротивление) при прямом включении и практически не проводит ток (имеет очень высокое сопротивление) при обратном включении.

Основными параметрами выпрямительных полупроводниковых диодов являются:

  • прямой ток диода Iпр, который нормируется при определенном прямом напряжении (обычно Uпр=1…2В);

  • максимально допустимый прямой ток Iпр.мах диода;

  • максимально допустимое обратное напряжение диода Uобр.мах, при котором диод еще может нормально работать длительное время;

  • постоянный обратной ток Iобр, протекающий через диод при обратном напряжении, равном Uобр.мах;

  • средний выпрямленный ток Iвп.ср, который может длительно проходить через диод при допустимой температуре его нагрева;

  • максимально допустимая мощность Pмах, рассеиваемая диодом, при которой обеспечивается заданная надежность диода.


Для сохранения работоспособности германиевого диода его температура не должна превышать +85°С, кремниевые диоды могут работать при температуре до +150°С.

Вольт-амперная характеристика германиевого и кремниевого диода представлена на рисунке 1.2.1.1



Рисунок 1.2.1.1 Вольт-амперная характеристика германиевого и кремниевого диода: а−германиевый диод; б−кремниевый диод

 

Падение напряжения при пропускании прямого тока у германиевых диодов составляет Uпр=0,3…0,6В, у кремниевых диодов Uпр=0,8…1,2В.

Большие падения напряжения при прохождении прямого тока через кремниевые диоды по сравнению с прямым падение напряжения на германиевых диодах связаны с большей высотой потенциального барьера рn- переходов, сформированных в кремнии. С увеличением температуры прямое падение напряжения уменьшается, что связано с уменьшением высоты потенциального барьера. При подаче на полупроводниковый диод обратного напряжения в нем возникает незначительный обратный ток, обусловленный движением не основных носителей заряда через рn-переход. При повышении температуры рn-перехода число не основных носителей заряда увеличивается за счет перехода части электронов из валентной зоны в зону проводимости и образования пар носителей заряда электрон-дырка. Поэтому обратный ток диода возрастает. В случае приложения к диоду обратного напряжения в несколько сотен вольт внешнее электрическое поле в запирающем слое становится настолько сильным, что способно вырвать электроны из валентной зоны в зону проводимости (эффект Зенера). Обратный ток при этом резко увеличивается, что вызывает нагрев диода, дальнейшей рост тока и, наконец, тепловой пробой (разрушение) рn-перехода.

Большинство диодов может надежно работать при обратных напряжениях, не превышающих (0,7…0,8) Uпроб. Допустимое обратное напряжение германиевых диодов достигает − 100…400В, а кремниевых диодов − 1000…1500В.

Выпрямительные диоды применяются для выпрямления переменного тока (преобразования переменного тока в постоянный); используются в схемах управления и коммутации для ограничения паразитных выбросов напряжений, в качестве элементов электрической развязки цепей и т.д.

2 Полупроводниковый стабилитрон


Полупроводниковый стабилитрон — это полупроводниковый диод, напряжение на котором в области электрического пробоя слабо зависит от тока и который используется для стабилизации напряжения.

В полупроводниковых стабилитронах используется свойство незначительного изменения обратного напряжения на рn-переходе при электрическом (лавинном или туннельном) пробое. Это связано с тем, что небольшое увеличение напряжения на рn-переходе в режиме электрического пробоя вызывает более интенсивную генерацию носителей заряда и значительное увеличение обратного тока.

Низковольтные стабилитроны изготовляют на основе сильнолегированного (низкоомного) материала. В этом случае образуется узкий плоскостной переход, в котором при сравнительно низких обратных напряжениях (менее 6В) возникает туннельный электрический пробой. Высоковольтные стабилитроны изготавливают на основе слаболегированного (высокоомного) материала. Поэтому их принцип действия связан с лавинным электрическим пробоем.

Основные параметры стабилитронов:

  • Напряжение стабилизации Uст (Uст=1…1000В);

  • минимальный Iст.міn и максимальный Iст.мах токи стабилизации (Iст.міn»1,0…10мА, Iст.мах»0,05…2,0А);

  • максимально допустимая рассеиваемая мощность Рмах;

  • дифференциальное сопротивление на участке стабилизации



  • температурный коэффициент напряжения на участке стабилизации:



TKU стабилитрона показывает на сколько процентов изменится стабилизирующее напряжение при изменении температуры полупроводника на 1°С (TKU=−0,5…+0,2)

Условно графическое обозначение стабилитрона представлена на рисунке 1.2.2.1.



Рисунок 1.2.2.1 Условно графическое обозначение стабилитрона а) не симметричный стабилитрон б) симметричный стабилитрон

Вольт-амперная характеристика стабилитрона на рисунке 1.2.2.2




Рисунок 1.2.2.2 Вольт-амперная характеристика стабилитрона

Стабилитроны используют для стабилизации напряжений источников питания, а также для фиксации уровней напряжений в различных схемах.

Существуют также двухсторонние (симметричные) стабилитроны, имеющие симметричную ВАХ относительно начала координат. Стабилитроны допускают последовательное включение, при этом результирующее стабилизирующее напряжение равно сумме напряжений стабилитронов: Uст = Uст1 + Uст2 +…

.3 Туннельный диод

Туннельный диод — это полупроводниковый диод на основе вырожденного полупроводника, в котором туннельный эффект приводит к появлению на вольт-амперной характеристике при прямом напряжении участка отрицательного дифференциального сопротивления.

Туннельный диод изготовляется из германия или арсенида галлия с очень большой концентрацией примесей, т.е. с очень малым удельным сопротивлением. Такие полупроводники с малым сопротивлением называют вырожденными. Это позволяет получить очень узкий рn-переход. В таких переходах возникают условия для относительно свободного туннельного прохождения электронов через потенциальный барьер (туннельный эффект). Туннельный эффект приводит к появлению на прямой ветви ВАХ диода участка с отрицательным дифференциальным сопротивлением.

Основные параметры туннельных диодов:

  • Пиковый ток Iп – прямой ток в точке максимума ВАХ;

  • ток впадины Iв − прямой ток в точке минимума ВАХ;

  • отношение токов туннельного диода Iп/Iв;

  • напряжение пика Uп – прямое напряжение, соответствующее пиковому току;

  • напряжение впадины Uв − прямое напряжение, соответствующее току впадины;

Туннельные диоды используются для генерации и усиления электромагнитных колебаний, а также в быстродействующих переключающих и импульсных схемах.

Вольт-амперная характеристика туннельного диода и его УГО представлена на рисунке 1.2.3.1

 
Рисунок 1.2.3.1 Вольт-амперная характеристика туннельного диода и его УГО