Файл: Билет 1 Уровни организации жизни.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 03.12.2023

Просмотров: 609

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Симбиоз – связи, сложившиеся в процессе совместного эволюционного становления видов, в условиях совместного существования в сообществе (лишайник, микориза, бактерии кишечного тракта).
Существуют также отношения, полезные одному из партнеров и безразличные для другого – комменсализм. Комменсализм как тип биотических отношений поддерживает жизнь многих видов в природе. Некоторые виды животных либо питаются остатками пищи представителей другого вида (рыбы-лоцманы, гиены), либо используют их убежища, норы, гнезда, не принося хозяину ни вреда, ни пользы. Так, в норах степных и пустынных грызунов спасаются от жары сотни видов насекомых, пауков и других мелких животных.
Наконец, если совместно живущие виды связаны только через цепь других видов и непосредственно не взаимодействуют, уживаясь в одном сообществе, то их отношения называют нейтральными.
Аменсализм: один из взаимодействующих видов испытывает угнетение, в то время
как угнетающий вид не получает ни вреда, ни пользы.
Нейтрализм — межвидовое взаимодействие биотических факторов. Оба вида не
оказывают никакого воздействия друг на друга. В природе истинный нейтрализм
крайне редок или даже невозможен, поскольку между всеми видами возможны
косвенные взаимоотношения. В связи с этим понятие нейтрализма часто
распространяют на случаи, когда взаимодействие между видами слабое или
несущественно. Например: белка и лось, рост штаммов стрептококк и
лактобактерий.
Мутуализм - обоюдополезные взаимоотношения, без которых не могут обойтись оба
вида.
Антибиоз — невозможность сосуществования двух видов организмов, основанная на
конкуренции прежде всего за источники питания. Примером служат
взаимоотношения сапрофитных бактерий и ряда плесневых грибов. Первые
способны быстро заселять среды, богатые органическими веществами, за счет
интенсивного размножения, а вторые, значительно уступая им в этом, приобрели
способность делать субстрат неблагоприятным для жизнедеятельности бактерий,
выделяя в него продукты своего метаболизма — антибиотики.
Комменсализм — форма симбиоза, при которой один вид использует остатки или
излишки пищи другого, не причиняя ему видимого вреда. Часто комменсалы даже
поселяются в теле хозяина, не снижая его жизнеспособности.
При хищничестве между организмами разных видов существуют только пищевые
взаимоотношения, а пространственные отсутствуют. Хищники используют
представителей другого вида для питания однократно, убивая их.
Протокооперация - оба вида получают от взаимодействия выгоду, но эти отношения
необязательны.
2. Доказательства генетического определения пола. Роль факторов среды в
развитии признаков пола.
В зависимости от значимости этих свойств различают первичные и вторичные половые признаки.
Под первичными половыми признаками понимают морфофизиологические особенности организма, обеспечивающие образование половых клеток — гамет, сближение и соединение их в процессе оплодотворения. Это наружные и внутренние органы размножения. Вторичными половыми признаками называют отличительные особенности того или другого пола, не связанные непосредственно с гаметогенезом, спариванием и оплодотворением, но играющие важную роль в половом размножении (обнаружение, и

привлечение партнера). Их развитие контролируется гормонами, синтезируемыми первичными половыми органами.
Важным доказательством в пользу наследственной детерминированности половой принадлежности организмов является наблюдаемое у большинства видов соотношение по полу 1 : 1.
Такое соотношение может быть обусловлено образованием двух видов гамет представителями одного пола (гетерогаметный пол) и одного вида гамет - особями другого пола (гомогаметный пол).
Это соответствует различиям в кариотипах организмов разных полов одного и того же вида, проявляющимся в половых хромосомах.
3. Клеточная теория и ее развитие
Клеточная теория — одно из общепризнанных биологических обобщений, утверждающих единство принципа строения и развития мира растений, животных и остальных живых организмов с клеточным строением, в котором клетка рассматривается в качестве общего структурного элемента живых организмов.
Развитие клеточной теории во второй половине XIX века
С 1840-х века учение о клетке оказывается в центре внимания всей биологии и бурно развивается, превратившись в самостоятельную отрасль науки — цитологию.
Для дальнейшего развития клеточной теории существенное значение имело её распространение на протистов (простейших), которые были признаны свободно живущими клетками (Сибольд, 1848).
В это время изменяется представление о составе клетки. Выясняется второстепенное значение клеточной оболочки, которая ранее признавалась самой существенной частью клетки, и выдвигается на первый план значение протоплазмы (цитоплазмы) и ядра клеток
(Моль, Кон, Л. С. Ценковский, Лейдиг, Гексли), что нашло своё выражение в определении клетки, данном М. Шульце в 1861 г.:
Клетка — это комочек протоплазмы с содержащимся внутри ядром.
В 1861 году Брюкко выдвигает теорию о сложном строении клетки, которую он определяет как «элементарный организм», выясняет далее развитую Шлейденом и
Шванном теорию клеткообразования из бесструктурного вещества (цитобластемы).
Обнаружено, что способом образования новых клеток является клеточное деление, которое впервые было изучено Молем на нитчатых водорослях. В опровержении теории цитобластемы на ботаническом материале большую роль сыграли исследования Негели и
Н. И. Желе.
Деление тканевых клеток у животных было открыто в 1841 г. Ремарком. Выяснилось, что дробление бластомеров есть серия последовательных делений (Биштюф, Н. А. Келликер).
Идея о всеобщем распространении клеточного деления как способа образования новых клеток закрепляется Р. Вирховом в виде афоризма:
«Omnis cellula ех cellula».
Каждая клетка из клетки.
В развитии клеточной теории в XIX веке остро встают противоречия, отражающие двойственный характер клеточного учения, развивавшегося в рамках механистического представления о природе. Уже у Шванна встречается попытка рассматривать организм как сумму клеток. Эта тенденция получает особое развитие в «Целлюлярной патологии»
Вирхова (1858).
Работы Вирхова оказали неоднозначное влияние на развитие клеточного учения:
-Клеточная теория распространялась им на область патологии, что способствовало признанию универсальности клеточного учения. Труды Вирхова закрепили отказ от теории цитобластемы Шлейдена и Шванна, привлекли внимание к протоплазме и ядру, признанными наиболее существенными частями клетки.


-Вирхов направил развитие клеточной теории по пути чисто механистической трактовки организма.
-Вирхов возводил клетки в степень самостоятельного существа, вследствие чего организм рассматривался не как целое, а просто как сумма клеток.
XX век
Клеточная теория со второй половины XIX века приобретала всё более метафизический характер, усиленный «Целлюлярной физиологией» Ферворна, рассматривавшего любой физиологический процесс, протекающий в организме, как простую сумму физиологических проявлений отдельных клеток. В завершении этой линии развития клеточной теории появилась механистическая теория «клеточного государства», в качестве сторонника которой выступал в том числе и Геккель. Согласно данной теории организм сравнивается с государством, а его клетки — с гражданами. Подобная теория противоречила принципу целостности организма.
Механистическое направление в развитии клеточной теории подверглось острой критике.
В 1860 году с критикой представления Вирхова о клетке выступил И. М. Сеченов.
Позднее клеточная теория подверглась критическим оценкам со стороны других авторов.
Наиболее серьёзные и принципиальные возражения были сделаны Гертвигом, А. Г.
Гурвичем (1904), М. Гейденгайном (1907), Добеллом (1911). С обширной критикой клеточного учения выступил чешский гистолог Студничка (1929, 1934).
В 1950-е советский биолог О. Б. Лепешинская, основываясь на данных своих исследований, выдвинула «новую клеточную теорию» в противовес «вирховианству». В её основу было положено представление, что в онтогенезе клетки могут развиваться из некоего неклеточного живого вещества. Критическая проверка фактов, положенных О. Б.
Лепешинской и её приверженцами в основу выдвигаемой ею теории, не подтвердила данных о развитии клеточных ядер из безъядерного «живого вещества».
Билет №8
1. Структурно-функциональная организация эукариотической клетки.
Клетка - целостная элементарная система, способная к самовоспроизведению и саморегуляции метаболических процессов. Эукариотическая клетка состоит из 3-х частей: поверхностного аппарата, цитоплазмы и ядра.
II. Поверхностный аппарат клетки состоит из плазмалеммы, надмембраннного и субмембранного комплексов.
Плазмолемма (внешняя клеточная мембрана). Занимает в клетке пограничное положение и играет роль полупроницаемого селективного барьера, который отделят цитоплазму от окружающей среды, а с другой – обеспечивает её связь с этой средой.
Функции плазмолеммы:
1) Распознавание данной клеткой других клеток и прикрепление к ним.
2) Распознавание клеткой межклеточного вещества и прикрепление к его эелементам.
3) Транспорт веществ в цитоплазму и из неё.
4) Взаимодействие с сигнальными молекулами.
5) Движение клетки (образование псевдо- фило- и ламеллоподий)
Структура плазмолеммы:
Плазмолемма состоит из липидного бислоя, в который погружены и с которым связаны молекулы белков.
Липидный бислой представлен преимущественно молекулами лецитина и цефалина. состоящими из гидрофильной головки и гидрофобного хвоста. Гидрофобные цепи обращены внутрь бислоя, гидрофильные головки – кнаружи. Липиды обеспечивают основные свойства мембраны в т.ч. их текучесть.


Мембранные белки обеспечивают спецефические свойства мембраны и играют различную биологическую роль (переносчиков, ферментов, рецепторов, структурных молекул).
По расположению на мембране выделяют два типа белков: периферические и интегральные.
Периферические белки обычно находятся вне липидного слоя и не прочно связаны с мембраной.
Интегральные белки либо полностью, либо частично погружены в липидный бислой.
Часть белков целиком пронизывает всю мембрану (т.н. трансмембранные белки).
Обменно-транспортная функция.
Выделяют 2 вида клеточного транспорта: пассивный и активный. Пассивный транспорт идет по градиенту концентрации веществ, без затраты энергии.
Если вещество проходит непосредственно через билипидный слой, такой вид пассивного транспорта называется простой диффузией (так транспортируются малые неполярные молекулы - 02, С02, N2, бензол, мочевина и др.), если через специфические белки - это облегченная диффузия (так транспортируются полярные молекулы. Пример: глюкоза.
Активный транспорт идет против градиента концентрации веществ, с затратой энергии.
Активный транспорт можно разделить на 2 вида: активный транспорт низкомолекулярных соединений. Пример: (Na+K+) - Hacoc и активный транспорт высокомолекулярных соединений (транспорт веществ в клетку эндоцитоз, из клетки - экзоцитоз) или транспорт в мембранной упаковке; на примере микропиноцитоза;
Рецепторная функция поверхностного аппарата связана с идентификацией информационного вещества - лиганда (как правило, это гормон) при помощи рецептора и адекватного ответа на данный стимул (это может быть запуск химического процесса в клетке или открытие транспортного канала)
III. Цитоплазма состоит из гиалоплазмы, органоидов и включений.
Гиалоплазма (цитоплазматический матрикс, цитозоль) - это внутренняя среда клетки, занимающая около 50% ее объема. По своим физико-химическим свойствам это коллоид, способный переходить из состояния геля в золь.
Гиалоплазма состоит на 90% из воды, коллоидные свойства определяются разнообразными белками. В ней содержатся также аминокислоты, полисахариды, нуклеотиды, АТФ, жирные кислоты, витамины, растворенные газы и т.д., то есть в гиалоплазме присутствует весь разнообразный спектр веществ, необходимый клетке для процессов ее жизнедеятельности.
Органоиды - это постоянные структуры клетки. По строению можно выделить немембранные органоиды (рибосомы, центриоли, микротрубочки, филаменты...) и мембранные, среди которых различают одномембранные (эндоплазматическая сеть, комплекс Гольджи, лизосомы, пероксисомы...) и двухмембранные (митохондрии, пластиды).
Рибосомы. Диаметр рибосом около 20 нм. Состоят из двух субъединиц: малой и большой.
В клетке эукариот два вида рибосом - 80 и 70 S (S - единицы седиментации) (табл. 1). В состав рибосом входят рРНК, рибосомальные белки, Синтез рРНК и сборка субъединиц рибосом осуществляется в ядрышке. Функции рибосом - синтез белка.
1   2   3   4   5   6   7   8   9   ...   17

Эндоплазматическая сеть (ЭПС) - система соединенных сплющенных цистерн.
Выделяют две структурно взаимосвязанные разновидности ЭПС: гладкую и гранулярную
(шероховатую). Гладкая ЭПС имеет трубчатое строение, ее мембраны более контрастны
(при электронной микроскопии), т. к. содержат рабочие ферменты. Функции гладкой
ЭПС: компартментализация, первичный синтез липидов, синтез олигосахаридов, синтез предшественников стероидов, транспорт синтезированных веществ, детоксикация.
Гранулярная ЭПС представлена уплощенными цистернами с рибосомами. Мембрана менее контрастна в сравнении с гладкой ЭПС. Функции гранулярной ЭПС: компартментализация, синтез экспортного белка, созревание белка, транспорт синтезированного белка и др.

Комплекс Голъджи (КГ) состоит из дискоидных цистерн, собранных в стопки, и пузырьков по периферии. Пузырьки представляют собой формирующиеся первичные лизосомы или секреторные гранулы. При митозе КГ делится пополам, т. е. имеет преемственное строение. Функции КГ: созревание, сортировка и упаковка экспортного белка; формирование первичных лизосом и секреторных гранул; синтез полисахаридов и липидов; детоксикация; компартментализация.
Лизосомы - округлые тельца с гомогенным содержимым, окруженные мембраной. Размер лизосом 0,2-1 мкм. Содержат около 60 гидролитических ферментов (20% в мембране, 80% внутри). Функции лизосом: ауто- и гетерофагия. Пероксисомы - округлые тельца с кристаллоподобной сердцевиной. Содержат разнообразные ферменты, большинство из которых относятся к группе каталаз. Выделяют два вида пероксисом: 0,15 - 0,25 мкм - универсальные мелкие, локализуются во всех клетках; 0,3 -1,5 мкм - крупные (в клетках печени, почек). Пероксисомы участвуют в метаболизме Н202, которая используется для последующего окисления разнообразных веществ.
Цитоскелет включает опорные органоиды - микротрубочки, микрофиламенты, промежуточные филаменты. Микротрубочки - полый цилиндр диаметром 24 нм, стенка которого построена из спирально упакованных субъединиц белка тубулина. Растут микротрубочки путем добавления с одного конца тубулиновых субъединиц. Кроме того, микротрубочки являются структурными компо-нентами центриолей, ресничек, жгутиков, базальных телец, митотического веретена.
Микрофиламенты - белковые нити диаметром 5 - 7 нм состоят из актина и миозина.
Микрофиламенты обеспечивают двигательные функции
Промежуточные фтаменты, их диаметр 8-10 нм, состоят из нитей собранных в пучки.
Данные структуры тканеспецифичны, т. е. в каждой ткани свои промежуточные филаменты.
Митохондрии - двухмембранный органоид, присутствующий только у эукариот. Размер и форма митохондрий варьирует в широких пределах, их типичное строение см. рис. 6.
Функции митохондрий: синтез АТФ (энергетическая).
Существуют и другие органоиды, имеющие свое специфическое строение и функции.
Литическая система клетки – расщепление макромолекул внутри клетки (рис.7).
Выделяют 2 вида литических циклов: аутофагический и гетерофагический.
Гетерофагический цикл - осуществляется гидролиз макро-молекул, поступивших в клетку путём эндоцитоза (фаго- и пиноцитоз).
Аутофагический цикл - расщепляются собственные клеточ-ные макромолекулы; является важнейшим элементом внутри-клеточной физио-логической регене-рации.
IV. Ядро (нуклеус) - наследственный аппарат эукариотической клетки содержит генетическую информацию. Форма ядра, как правило, округлая, но может быть разнообразной, что зависит от формы клетки и ее функционального состояния. В структуре ядра выделяют следующие компоненты: поверхностный аппарат, кариоплазму, ядерный матрикс, хроматин, ядрышко.
Поверхностный аппарат ядра, его строение см. рис. 8. Поровые комплексы занимают площадь от 10 -12% поверхности ядра и более, что зависит от его активности, и состоят из
3-х рядов глобулярных белков, часто встречается центральная глобула. Глобулярные белки соединены фибриллярными. Функция поровых комплексов: вывод из ядра в цитоплазму мРНК, а также ее созревание; выход субъединиц рибосом; проведение в ядро из цитоплазмы рибосомальных, гистоновых белков, ферментов репликации и транскрипции, а также нуклеотидов. Ламина (плотная пластинка) тесно связана с конденсированным хроматином, в связи с чем, кроме поддержания “архитектуры ядра", участвует в пространственной организации хроматина
Ядерная оболочка (кариолемма). Кариолемма состоит из двух мембран – наружной и внутренней – разделенных полостью и смыкающихся в области ядерных пор.