ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 04.12.2023
Просмотров: 19
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Геофизические методы поисков и
разведки месторождений полезных
ископаемых.
Основы геологии
2
Тема 1. Основы геологии
1. Понятие о науке «Геология», нефтепромысловая геология, как
одна из геологических дисциплин
Геология (греч. гео – Земля, логос – слово, учение) – это наука о строении Земли, ее происхождении и развитии, основанная на изучении горных пород и земной коры в целом всеми доступными методами с привлечением данных астрономии, астрофизики, физики, химии, биологии и других наук.
Основным объектом изучения геологии является литосфера (литос – камень), представляющая твердую наружную оболочку Земли. Литосфера сложена разнообразными горными породами, например, такими как гранит, базальт, песчаник, известняк и др. горные породы – это сложные природные образования, состоящие из минералов, представляющих собой природные химические соединения, возникающие при различных геологических процессах в земной коре.
Таким образом, главными объектами изучения геологии являются минералы, горные породы, геологические тела, вымершие организмы
(окаменелости), газовые и жидкие среды, физические поля.
Предметом геологии (т.е. результат, полученный наукой) является пространственно-временные модели развития геологических процессов.
Чтобы познать строение Земли, геология вынуждена исследовать литосферу в различных направлениях. И уже в начале XIX столетия наметился целый ряд крупных особенных научных направлений в изучении
Земли, получивших свои названия:
1. Геохимия – комплекс наук, изучающие состав Земли (минералогия, кристаллография, петрография, геохимия);
2. Динамическая геология – изучает геологические процессы, совершающиеся в земной коре, т.е. динамику Земли (деятельность морей, рек, подземных вод, ледников, ветра, магматизм, тектонические движения);
3. Историческая геология – направление, изучающее историю развития
Земли с момента ее образования до настоящего времени (стратиграфия, палеонтология, историческая геология – это науки, которые являются основными в этом направлении);
4. Практическая геология – занимается изучением вопросов практического использования недр нашей планеты (учение о полезных ископаемых; геология нефти и газа; поиски и разведка месторождений полезных ископаемых и др. науки)
5. Морская геология – наука, изучающая состав, строение, полезные ископаемые дна морей и океанов и историю их образования. В развитии это направления огромную роль сыграло судно «Гломер Челленджер» и глубоководные агрегаты
3 6. Космогеология – занимается изучением геологического строения земной коры путем фотографирования земной поверхности с летательных аппаратов (самолетов, спутников, космических станций), получая таким образом аэрофотоснимки и космоснимки
7. Глубинная геология – направление, которое ставит своей целью изучение глубоких горизонтов земной коры с помощью сверхглубоких скважин (глубиной до 15 км). Одна из таких скважин – Кольская скважина –
СГ-3, бурение которой было начато в мае 1970 г., а в 1983 году она достигла глубины 12 000 м. в результате ее бурения впервые получена уникальная геолого-геофизическая информация о глубинном строении земной коры и состояние пород на больших глубинах.
8. Геоэкология – в задачу этого направления входит изучение степени и характера техногенного воздействия человека на геологическую среду и выработка рекомендации по ее сохранению.
9. Нефтегазопромысловая геология - отрасль геологии, занимающаяся детальным изучением месторождений и залежей нефти и газа в начальном
(естественном) состоянии и в процессе разработки для определения их народнохозяйственного значения и рационального использования недр.
Цели нефтегазопромысловой геологии заключаются в геологическом обосновании наиболее эффективных способов организации добычи нефти и газа, обеспечение рационального использования и охраны недр и окружающей среды. Эта основная цель достигается путем изучения внутренней структуры залежи нефти и газа и закономерностей ее изменения в процессе разработки.
2. Общее понятие о строении земного шара
Формирование Земли сопровождалось дифференциацией вещества, результатом которой стало разделение Земли на концентрически расположенные слои (геосферы), различающиеся химическим составом, агрегатным состоянием и физическими свойствами.
В центре образовалось ядро Земли, окруженное мантией. Из наиболее легких компонентов вещества, выделившихся из мантии, возникла расположенная над мантией земная кора – «твердая» Земля, заключающая в себе почти всю массу планеты. Далее возникли водная и воздушная оболочки нашей планеты.
Таким образом, можно выделить следующий ряд геосфер, из которых состоит Земля:
ядро;
мантия;
литосфера;
гидросфера;
атмосфера;
магнитосфера.
Общая характеристика основных геосфер земли
4
Ядро Земли – занимает центральную область нашей планеты. Это самая глубокая геосфера. Средний радиус ядра около 3500 км, располагается оно глубже 2900 км. Состоит из двух частей – большого внешнего и малого внутреннего ядра. Природа внутреннего ядра Земли с глубины 5000 км остается загадкой. Это шар диаметром 2200 км, который, как полагают ученые, состоит из железа и никеля и имеет температуру плавления порядка
4500 °С.
Внешнее ядро представляет собой жидкость – расплавленное железо с примесью никеля и серы. Давление в этом слое меньше. Внешнее ядро – шаровой слой толщиной 2200 км.
Мантия – наиболее мощная оболочка Земли, занимающая 2/3 ее массы и большую часть объема. Она также существует в виде двух шаровых слоев – нижней и верхней мантии. Толщина нижней части мантии – 2000 км, верхней
– 900 км.
Благодаря высокому давлению вещество мантии, скорее всего, находится в кристаллическом состоянии. Температура мантии составляет около 2500 °С. Именно высокие давления обусловили такое агрегатное состояние вещества, в ином случае указанная температура привела бы к его расплавлению.
В расплавленном состоянии находится астеносфера – нижняя часть верхней мантии. Это подстилающий верхнюю мантию и литосферу слой. В целом же верхняя мантия обладает интересной особенностью: по отношению к кратковременным нагрузкам она ведет себя как жесткий материал, а по отношению к длительным нагрузкам – как пластичный.
Литосфера – твѐрдая оболочка Земли. Состоит из земной коры и верхней части мантии, до астеносферы, где скорости сейсмических волн понижаются, свидетельствуя об изменении пластичности пород. Литосфера под океанами и континентами значительно различается. Литосфера под континентами состоит из осадочного, гранитного и базальтового слоев общей мощностью до 80 км. Литосфера под океанами претерпела множество этапов частичного плавления в результате образования океанической коры, она сильно обеднена легкоплавкими редкими элементами, в основном состоит из дунитов и гарцбургитов, еѐ толщина составляет 5—10 км, а гранитный слой полностью отсутствует.
Гидросфера – водная оболочка Земли представлена на нашей планете
Мировым океаном, пресными водами рек и озер, ледниковыми и подземными водами. Общие запасы воды на Земле составляют 1,5 млрд км
3
Из этого количества 97% приходится на соленую морскую воду, 2% составляет замерзшая вода ледников и 1% – пресная вода.
Гидросфера – это сплошная оболочка Земли, так как моря и океаны переходят в подземные воды на суше, а между сушей и морем идет постоянный круговорот воды, ежегодный объем которого составляет 100 тыс. км
3
5
Атмосфера – это воздушная оболочка Земли, окружающая ее и вращающаяся вместе с ней. Она состоит из воздуха – смеси газов (азота, кислорода, инертных газов, водорода, углекислого газа, паров воды). Кроме того, воздух содержит большое количество пыли и различных примесей, порождаемых геохимическими и биологическими процессами на поверхности планеты.
Атмосфера Земли имеет слоистое строение, причем слои отличаются по физическим и химическим свойствам. Важнейшими из них являются температура и давление, изменение которых лежит в основе выделения атмосферных слоев. Таким образом, в атмосфере Земли выделяют: тропосферу, стратосферу, ионосферу, мезосферу, термосферу и экзосферу.
Тропосфера – это нижний слой атмосферы, определяющий погоду на нашей планете. Имеет постоянную температуру. Его толщина – 10–18 км. С высотой падают давление и температура. В тропосфере содержится основное количество водяных паров, образуются облака и формируются все виды осадков.
Толщина стратосферы доходит до 50 км. Наблюдается повышение температуры из-за поглощения солнечного излучения озоном.
Ионосфера – эта часть атмосферы, начинающаяся с высоты 50 км и состоящая из ионов (электрически заряженных частиц воздуха). Ионизация воздуха происходит под действием Солнца.
С высоты 80 км начинается мезосфера, роль которой состоит в поглощении ультрафиолетовой радиации Солнца озоном, водяным паром и углекислым газом.
На высоте 90–400 км находится термосфера. В ней происходят основные процессы поглощения и преобразования солнечного ультрафиолетового и рентгеновского излучений.
Верхняя область атмосферы, простирающаяся от 450–800 км до 2000–
3000 км, называется экзосферой. В ней содержатся атомарный кислород, гелий и водород. Часть этих элементов постоянно уходит в мировое пространство.
Магнитосфера – это внешняя и наиболее протяженная оболочка Земли.
Магнитосфера представляет собой область, физические свойства которой определяются магнитным полем Земли и его взаимодействием с потоками заряженных частиц космического происхождения. Образует магнитный хвост Земли. В ней находятся радиационные пояса.
6
Рис. 1.1. Основные геосферы Земли
3. Строение земной коры
Земная кора — верхняя часть литосферы. Но даже эту самую верхнюю оболочку планеты мы знаем не очень хорошо. Узнать о строении земной коры помогает сейсмолокация. Расшифровывая скорость прохождения сейсмических волн через разные среды, можно получить данные о плотности земных слоѐв, сделать вывод об их составе. Под континентами и океаническими впадинами строение земной коры различно.
ОКЕАНИЧЕСКАЯ КОРА
Океаническая земная кора более тонкая (5—7 км), чем континентальная, и состоит из двух слоѐв — нижнего базальтового и верхнего осадочного.
Ниже базальтового слоя находится поверхность Мохо и верхняя мантия.
Рельеф дна океанов очень сложен. Среди разнообразных форм рельефа
7 особенно выделяются огромные срединно-океанические хребты. В этих местах происходит зарождение молодой базальтовой океанической коры из вещества мантии. Через глубинный разлом, проходящий вдоль вершин по центру хребта — рифт, магма выходит на поверхность, растекаясь в разные стороны в виде лавовых подводных потоков, постоянно раздвигая в разные стороны стенки рифтового ущелья. Этот процесс называется спредингом.
Срединно-океанические хребты возвышаются над дном океанов на несколько километров, а их протяженность достигает 80 тыс. км. Хребты рассекаются параллельными поперечными разломами. Их называют трансформными. Рифтовые зоны — самые неспокойные сейсмические зоны
Земли. Базальтовый слой перекрывают толщи морских осадочных отложений
— илов, глин разного состава.
КОНТИНЕНТАЛЬНАЯ КОРА
Континентальная земная кора занимает меньшую площадь (около 40% поверхности Земли - прим. от geoglobus.ru), но имеет более сложное строение и гораздо большую мощность. Под высокими горами еѐ толщина измеряется
60—70 километрами. Строение коры континентального типа трѐхчленное — базальтовый, гранитный и осадочный слои. Гранитный слой выходит на поверхность на участках, именуемых щитами. Например, Балтийский щит, часть которого занимает Кольский полуостров, сложен породами гранитного состава. Именно здесь велось глубокое бурение, и Кольская сверхглубокая скважина достигла отметки 12 км. Но попытки пробурить весь гранитный слой насквозь оказались неудачными.
Шельф — подводная окраина материка
— также имеет континентальную кору. То же относится и к крупным островам — Новой
Зеландии, островам Калимантан, Сулавеси, Новая Гвинея, Гренландия,
Сахалин, Мадагаскар и другим. Окраинные моря и внутренние моря, такие как Средиземное, Чѐрное, Азовское, расположены на коре континентального типа.
Говорить о базальтовом и гранитном слоях континентальной коры можно лишь условно. Имеется в виду, что скорость прохождения сейсмических волн в этих слоях сходна со скоростью прохождения их в породах базальтового и гранитного состава. Граница гранитного и базальтового слоев выделяется не очень чѐтко и изменяется по глубине.
Базальтовый слой граничит с поверхностью Мохо. Верхний осадочный слой меняет свою толщину в зависимости от рельефа поверхности. Так, в горных районах он тонкий или вообще отсутствует, так как внешние силы Земли перемещают рыхлый материал вниз по склонам - прим. от geoglobus.ru. Зато в предгорьях, на равнинах, в котловинах и впадинах он достигает значительных мощностей. Например, в Прикаспийской низменности, которая испытывает погружение, осадочный слой достигает 22 км.
8
Рис. 1.2. Строение земной коры
ИЗ ИСТОРИИ КОЛЬСКОЙ СВЕРХГЛУБОКОЙ СКВАЖИНЫ
С момента начала бурения этой скважины в 1970 году ученые ставили сугубо научную задачу этого эксперимента: определить границу между гранитным и базальтовым слоями. Место было выбрано с учетом того, что именно в районах щитов гранитный слой, не перекрытый осадочным, может быть пройден «насквозь», что позволило бы прикоснуться к породам базальтового слоя, увидеть разницу. Ранее предполагалось, что такая граница на Балтийском щите, где на поверхность выходят древние магматические породы, должна находиться на глубине примерно 7 км.
За несколько лет бурения скважина неоднократно отклонялась от заданного вертикального направления, пересекая пласты с разной прочностью. Иногда буры ломались, и тогда приходилось начинать бурение заново, обходными стволами. Материал, который доставлялся на поверхность, исследовался разными учеными и постоянно приносил удивительные открытия. Так, на глубине около 2 км были найдены медно- никелевые руды, а с глубины 7 км был доставлен керн (так называется образец породы из бура в виде длинного цилиндра - прим. от geoglobus.ru), в котором были обнаружены окаменевшие остатки древних организмов.
Но, пройдя более 12 км к 1990 году, скважина так и не вышла за пределы гранитного слоя. В 1994 году бурение было остановлено. Кольская сверхглубокая — не единственная в мире скважина, которую закладывали для глубокого бурения. Подобные эксперименты велись в разных местах несколькими странами. Но только Кольская достигла таких отметок, за что была занесена в Книгу рекордов Гиннеса.
4. Типы (группы) горных пород, их происхождение
Земная кора сложена из горных пород, которые по происхождению делятся на три группы: магматические (или изверженные), осадочные и метаморфические (или видоизмененные).
9
Магматические породы образовались в результате застывания магмы и имеют, в основном, кристаллическое строение. Животных и растительных остатков в них не содержится. Типичные представители магматических пород - базальты и граниты.
Осадочные породы образовались в результате осаждения органических и неорганических веществ на дне водных бассейнов и поверхности материков. В свою очередь они делятся на обломочные породы, а также породы химического, органического и смешанного происхождения.
Обломочные породы образовались в результате отложения мелких кусочков разрушенных пород. К ним относятся валуны, галечники, гравий, пески, песчаники, глины и др.
Породы химического происхождения образовались вследствие выпадения солей из водных растворов или в результате химических реакций в земной коре. Такими породами являются гипс, каменная соль, бурые железняки, кремнистые туфы и др.
Породы органического происхождения являются окаменелыми останками животных и растительных организмов. К ним относятся известняки, мел и др.
Породы смешанного происхождения сложены из материалов обломочного, химического и органического происхождения. Представители данных пород - мергели, глинистые и песчаные известняки.
Метаморфические породы образовались из магматических и осадочных пород под воздействием высоких температур и давлений в толще земной коры. К ним относятся сланцы, мрамор, яшмы и др.
Поскольку основные известные месторождения нефти и газа сосредоточены в осадочных породах, им необходимо уделить допол- нительное внимание. Осадочные породы встречаются в пониженных местах континентов и в морских бассейнах. В них часто сохраняются останки животных и растительных организмов, населявших Землю в различные времена в виде отпечатков и окаменелостей. Поскольку определенные виды организмов существовали только в течение определенных промежутков времени, то и возраст пород стало возможным увязать с наличием в них тех или иных останков. На этом основано применяемое в геологии исчисление возраста горных пород. Оно представлено в виде геохронологической таблицы (табл. 1.1).