Файл: Моделирование сложных систем. Имитационное моделирование. Технология моделирования по дисциплине.docx

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 04.12.2023

Просмотров: 37

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ



МИНИСТЕРСТВО НАУКИ и высшего образования РОССИЙСКОЙ ФЕДЕРАЦИИ

федеральное государственное бюджетное образовательное учреждение высшего

образования

санкт-петербургский горный УНИВЕРСИТЕТ

Кафедра материаловедения и технологии художественных материалов

Курсовая

На тему: моделирование сложных систем. Имитационное моделирование. Технология моделирования

по дисциплине: «Математическое моделирование и современные проблемы наук о материалах и процессах»

(наименование учебной дисциплины согласно учебному плану)

Выполнил: студент гр. МНМ-18 _________________ /Хоришков Д.Г/

(подпись) (Ф.И.О.)

ПРОВЕРИЛ: доцент _________________ /Сивенков А.В/

(подпись) (Ф.И.О.)

Санкт-Петербург

2022

ВВЕДЕНИЕ

Методы реализации моделей зависят от формы представления модели, цели моделирования, чёткости определения цели, определённости условий, которым должны удовлетворять результаты, имеющихся технических и временных ресурсов и т.д. Прежде чем приступать к моделированию, необходимо уяснить, что результаты моделирования необходимы и достаточны для достижения целей моделирования и, что имеющихся исходных данных достаточно для получения нужных результатов, проанализировать альтернативные варианты реализации модели, оценить, хотя бы приблизительно, целесообразность моделирования, наметить пути оценки качества результатов моделирования.

1. Моделирование систем и языки программирования. 

Алгоритмические языки при моделировании систем служат вспомогательным аппаратом разработки, машинной реализации и анализа характеристик моделей. Каждый язык моделирования должен отражать определенную структуру понятий для описания широкого класса явлений. Выбрав для решения задачи моделирования процесса функционирования системы конкретный язык, исследователь получает в распоряжение тщательно разработанную систему абстракций, предоставляющих ему основу для формализации процесса функционирования исследуемой системы. Высокий уровень проблемной ориентации языка моделирования
значительно упрощает программирование моделей, а специально предусмотренные в нем возможности сбора, обработки и вывода результатов моделирования позволяют быстро и подробно анализировать возможные исходы имитационного эксперимента с моделью Мм.

Основными моментами, характеризующими качество языков моделирования, являются: удобство описания процесса функционирования системы S, удобство ввода исходных данных моделирования и варьирования структуры, алгоритмов и параметров модели, реализуемость статистического моделирования, эффективность анализа и вывода результатов моделирования, простота отладки и контроля работы моделирующей программы, доступность восприятия и использования языка. Будущее языков моделирования определяется прогрессом в области создания мультимедийных систем машинной имитации, а также проблемно-ориентированных на цели моделирования информационно-вычислительных систем.

Рассмотрим основные понятия, связанные с алгоритмическими языками и их реализацией на ЭВМ вообще и языками моделирования в частности.

Язык программирования представляет собой набор символов, распознаваемых ЭВМ и обозначающих операции, которые можно реализовать на ЭВМ. На низшем уровне находится основной язык машины, программа на котором пишется в кодах, непосредственно соответствующих элементарным машинным действиям (сложение, запоминание, пересылка по заданному адресу и т. д.). Следующий уровень занимает автокод (язык АССЕМБЛЕРА) вычислительной машины. Программа на автокоде составляется из мнемонических символов, преобразуемых в машинные коды специальной программой - ассемблером.

Компилятором называется программа, принимающая инструкции, написанные на алгоритмическом языке высокого уровня, и преобразующая их в программы на основном языке машины или на автокоде, которые в последнем случае транслируются еще раз с помощью ассемблера.

Интерпретатором называется программа, которая, принимая инструкции входного языка

, сразу выполняет соответствующие операции в отличие от компилятора, преобразующего эти инструкции в запоминающиеся цепочки команд. Трансляция происходит в течение всего времени работы программы, написанной на языке интерпретатора. В отличие от этого компиляция и ассемблирование представляют собой однократные акты перевода текста с входного языка на объектный язык машины после чего полученные программы выполняются без повторных обращений к транслятору.

Программа, составленная в машинных кодах или на языке АССЕМБЛЕРА, всегда отражает специфику конкретной ЭВМ. Инструкции такой программы соответствуют определенным машинным операциям и, следовательно, имеют смысл только в той ЭВМ, для которой они предназначены, поэтому такие языки называются машинно-ориентированными языками.

Большинство языков интерпретаторов и компиляторов можно классифицировать как процедурно-ориентированные языки. Эти языки качественно отличаются от машинно-ориентированных языков, описывающих элементарные действия ЭВМ и не обладающих проблемной ориентацией. Все процедурно-ориентированные языки предназначены для определенного класса задач, включают в себя инструкции, удобные для формулировки способов решения типичных задач этого класса. Соответствующие алгоритмы программируются в обозначениях, не связанных ни с какой ЭВМ.

Язык моделирования представляет собой процедурно-ориентированный язык, обладающий специфическими чертами. Основные языки моделирования разрабатывались в качестве программного обеспечения имитационного подхода к изучению процесса функционирования определенного класса систем [31].

Особенности использования алгоритмических языков. Рассмотрим преимущества и недостатки использования для моделирования процесса функционирования систем языков имитационного моделирования (ЯИМ) и языков общего назначения (ЯОН), т. е. универсальных и процедурно-ориентированных алгоритмических языков. Целесообразность использования ЯИМ вытекает из двух основных причин: 1) удобство программирования модели системы, играющее существенную роль при машинной реализации моделирующих алгоритмов; 2) концептуальная направленность языка на класс систем, необходимая на этапе построения модели системы и выборе общего направления исследований в планируемом машинном эксперименте. Практика моделирования систем показывает, что именно использование ЯИМ во многом определило успех имитации как метода экспериментального исследования сложных реальных объектов.


Языки моделирования позволяют описывать моделируемые системы в терминах, разработанных на базе основных понятий имитации. До того, как эти понятия были четко определены и формализованы в ЯИМ, не существовало единых способов описания имитационных задач, а без них не было связи между различными- разработками в области постановки имитационных экспериментов. Высокоуровневые языки моделирования являются удобным средством общения заказчика и разработчика машинной модели Мм.

Несмотря на перечисленные преимущества ЯИМ, в настоящее время выдвигаются основательные аргументы как технического, так и эксплуатационного характера против полного отказа при моделировании от универсальных и процедурно-ориентированных языков. Технические возражения против использования ЯИМ: вопросы эффективности рабочих программ, возможности их отладки и т. п. В качестве эксплуатационных недостатков упоминается нехватка документации по существующим ЯИМ, сугубо индивидуальный характер соответствующих трансляторов, усложняющий их реализацию на различных ЭВМ, и трудности исправления ошибок. Снижение эффективности ЯИМ проявляется при моделировании задач более разнообразных, чем те, на которые рассчитан конкретный язык моделирования. Но здесь следует отметить, что в настоящее время не существует и ЯОН, который был бы эффективен при решении задач любого класса.

Серьезные недостатки ЯИМ проявляются в том, что в отличие от широко применяемых ЯОН, трансляторы с которых включены в поставляемое изготовителем математическое обеспечение всех современных ЭВМ, языки моделирования, за небольшим исключением, разрабатывались отдельными организациями для своих достаточно узко специализированных потребностей. Соответствующие трансляторы плохо описаны и приспособлены для эксплуатации при решении задач моделирования систем, поэтому, несмотря на достоинства ЯИМ, приходится отказываться от их практического применения в ряде конкретных случаев.

При создании системы моделирования на базе любого языка необходимо решить вопрос о синхронизации процессов в модели, так как в каждый момент времени, протекающего в системе (системного времени), может потребоваться обработка нескольких событий, т. е. требуется псевдопараллельная организация имитируемых процессов в машинной модели 
Мм. Это является основной задачей монитора моделирования, который выполняет следующие функции: управление процессами (согласование системного и машинного времени) и управление ресурсами (выбор и распределение в модели ограниченных средств моделирующей системы).

Подходы к разработке языков моделирования. К настоящему времени сложились два различных подхода к разработке языков моделирования: непрерывный и дискретный - отражающие основные особенности исследуемых методом моделирования систем [35, 43, 46]. Поэтому ЯИМ делятся на две самостоятельные группы, которые соответствуют двум видам имитации, развивавшимся независимо друг от друга: для имитации непрерывных и дискретных процессов.

Для моделирования непрерывных процессов могут быть использованы не только АВМ, но и ЭВМ, последние при соответствующем программировании имитируют различные непрерывные процессы. При этом ЭВМ обладают большей надежностью в эксплуатации и позволяют получить высокую точность результатов, что привело к разработке языков моделирований, отображающих модель в виде блоков таких типов, которые играют роль стандартных блоков АВМ (усилителей, интеграторов, генераторов функций и т. п.). Заданная схема моделирующего алгоритма преобразуется в систему совместно рассматриваемых дифференциальных уравнений. Моделирование в этом случае сводится, по сути дела, к отысканию численных решений этих уравнений при использовании некоторого стандартного пошагового метода.

Примером языка моделирования непрерывных систем на ЭВМ путем представления моделируемой системы в виде уравнений в конечных разностях является язык DYNAMO, для которого уравнения устанавливают соотношения между значениями функций в моменты времениt и t+dt и между значениями их производных в момент времени t+dt/2. И в этом случае моделирование, по существу, представляет собой пошаговое решение заданной системы дифференциальных уравнений [46].

Универсальная ЭВМ - устройство дискретного типа, а поэтому должна обеспечивать дискретную аппроксимацию процесса функционирования исследуемой системы S. Непрерывные изменения в процессе функционирования реальной системы отображаются в дискретной модели Мм, реализуемой на ЭВМ, некоторой последовательностью дискретных событий, и такие модели называются моделями дискретных событий. Отдельные события, отражаемые в дискретной модели, могут определяться с большой степенью приближения к действительности, что обеспечивает адекватность таких дискретных моделей реальным процессам, протекающим в системах