Файл: Лекция 5 Общая вирусология. Учебные цели лекции ( перечислить 35 наиболее значимых учебных целей лекции).docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 05.12.2023
Просмотров: 24
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Лекция №5 «Общая вирусология».
-
Учебные цели лекции: (перечислить 3-5 наиболее значимых учебных целей лекции).
-
Ознакомить студентов с понятиями и принципами в вирусологии. -
Представить строение и классификацию вирусов. -
Ознакомить студентов с разновидностями вирусных заболеваний. -
Научить способам индикации и идентификации вирусов. -
Представить методы лабораторной диагностики вирусных заболеваний. -
Доказать важность вирусологии как современного направления в науке.
-
План лекции: (перечислить конкретные вопросы лекции).
1. Взаимодействие вирусов с клеткой.
2. Строение и классификация вирусов.
3. Культивирование вирусов.
4. Методы индикации вирусов.
5. Методы идентификации вирусов.
-
Технические средства обучения (мультимедийный проектор, видеоаппаратура, ноутбук, таблицы, плакаты, интерактивная доска и др.) -
Методы активизации студентов во время изложения лекционного материала: (на усмотрение лектора – проблемные ситуации, клинические примеры, ситуационные задачи, анализы крови и др.).
Задача №1. Перечислите 3 химических компонента нуклеоида:
а)*ДНК
б)*РНК
в)*белок
г). липид
Задача №2. Как называются вирусы, которые в своем составе имеют капсид и суперкапсид?
а) сложные*;
б) неканонические;
в) простые;
д) бактериофаги.
Задача №3. Как называется процесс размножения вирусов, при котором синтез белков и нуклеиновых кислот происходит в разных местах и в разное время?
а) дизъюнктивный *;
б) трансформация;
в) трансдукция;
г) митоз.
5. Содержание лекционного материала (тезисы, полный текст, распечатки мультимедийных презентаций и т.д.)
1. Морфология и структура вирусов.
Вирусы – микроорганизмы, составляющие царство Vira.
Отличительные признаки:
1) содержат лишь один тип нуклеиновой кислоты (РНК или ДНК);
2) не имеют собственных белоксинтезирующих и энергетических систем;
3) не имеют клеточной организации;
4) обладают дизъюнктивным (разобщенным) способом репродукции (синтез белков и нуклеиновых кислот происходит в разных местах и в разное время);
5) облигатный паразитизм вирусов реализуется на генетическом уровне;
6) вирусы проходят через бактериальные фильтры.
Вирусы могут существовать в двух формах: внеклеточной (вириона) и внутриклеточной (вируса).
По форме вирионы могут быть:
1) округлыми;
2) палочковидными;
3) в виде правильных многоугольников;
4) нитевидными и др.
Размеры их колеблются от 15–18 до 300–400 нм.
В центре вириона – вирусная нуклеиновая кислота, покрытая белковой оболочкой – капсидом, который имеет строго упорядоченную структуру. Капсидная оболочка построена из капсомеров. Нуклеиновая кислота и капсидная оболочка составляют нуклеокапсид.
Нуклеокапсид сложноорганизованных вирионов покрыт внешней оболочкой – суперкапсидом, которая может включать в себя множество функционально различных липидных, белковых, углеводных структур.
Строение ДНК– и РНК-вирусов принципиально не отличается от НК других микроорганизмов. У некоторых вирусов в ДНК встречается урацил.
ДНК может быть:
1) двухцепочечной;
2) одноцепочечной;
3) кольцевой;
4) двухцепочечной, но с одной более короткой цепью;
5) двухцепочечной, но с одной непрерывной, а с другой фрагментированной цепями.
РНК может быть:
1) однонитевой;
2) линейной двухнитевой;
3) линейной фрагментированной;
4) кольцевой;
5) содержащей две одинаковые однонитевые РНК.
Вирусные белки подразделяют на:
1) геномные – нуклеопротеиды. Обеспечивают репликацию вирусных нуклеиновых кислот и процессы репродукции вируса. Это ферменты, за счет которых происходит увеличение количества копий материнской молекулы, или белки, с помощью которых на матрице нуклеиновой кислоты синтезируются молекулы, обеспечивающие реализацию генетической информации;
2) белки капсидной оболочки – простые белки, обладающие способностью к самосборке. Они складываются в геометрически правильные структуры, в которых различают несколько типов симметрии: спиральный, кубический (образуют правильные многоугольники, число граней строго постоянно) или смешанный;
3) белки суперкапсидной оболочки – это сложные белки, разнообразные по функции. За счет них происходит взаимодействие вирусов с чувствительной клеткой. Выполняют защитную и рецепторную функции.
Среди белков суперкапсидной оболочки выделяют:
а) якорные белки (одним концом они располагаются на поверхности, а другим уходят в глубину; обеспечивают контакт вириона с клеткой);
б) ферменты (могут разрушать мембраны);
в) гемагглютинины (вызывают гемагглютинацию);
г) элементы клетки хозяина.
2. Взаимодействие вирусов с клеткой хозяина
Взаимодействие идет в единой биологической системе на генетическом уровне.
Существует четыре типа взаимодействия:
1) продуктивная вирусная инфекция (взаимодействие, в результате которого происходит репродукция вируса, а клетки погибают);
2) абортивная вирусная инфекция (взаимодействие, при котором репродукции вируса не происходит, а клетка восстанавливает нарушенную функцию);
3) латентная вирусная инфекция (идет репродукция вируса, а клетка сохраняет свою функциональную активность);
4) вирус-индуцированная трансформация (взаимодействие, при котором клетка, инфицированная вирусом, приобретает новые, ранее не присущие ей свойства).
После адсорбции вирионы проникают внутрь путем эндоцитоза (виропексиса) или в результате слияния вирусной и клеточной мембран. Образующиеся вакуоли, содержащие целые вирионы или их внутренние компоненты, попадают в лизосомы, в которых осуществляется депротеинизация, т. е. «раздевание» вируса, в результате чего вирусные белки разрушаются. Освобожденные от белков нуклеиновые кислоты вирусов проникают по клеточным каналам в ядро клетки или остаются в цитоплазме.
Нуклеиновые кислоты вирусов реализуют генетическую программу по созданию вирусного потомства и определяют наследственные свойства вирусов. С помощью специальных ферментов (полимераз) снимаются копии с родительской нуклеиновой кислоты (происходит репликация), а также синтезируются информационные РНК, которые соединяются с рибосомами и осуществляют синтез дочерних вирусных белков (трансляцию).
После того как в зараженной клетке накопится достаточное количество компонентов вируса, начинается сборка вирионов потомства. Процесс этот происходит обычно вблизи клеточных мембран, которые иногда принимают в нем непосредственное участие. В составе вновь образованных вирионов часто обнаруживаются вещества, характерные для клетки
, в которой размножается вирус. В таких случаях заключительный этап формирования вирионов представляет собой обволакивание их слоем клеточной мембраны.
Последним этапом взаимодействия вирусов с клетками является выход или освобождение из клетки дочерних вирусных частиц. Простые вирусы, лишенные суперкапсида, вызывают деструкцию клетки и попадают в межклеточное пространство. Другие вирусы, имеющие липопротеидную оболочку, выходят из клетки путем почкования. При этом клетка длительное время сохраняет жизнеспособность. В отдельных случаях вирусы накапливаются в цитоплазме или ядре зараженных клеток, образуя кристаллоподобные скопления – тельца включений.
3. Культивирование вирусов
Основные методы культивирования вирусов:
1) биологический – заражение лабораторных животных. При заражении вирусом животное заболевает. Если болезнь не развивается, то патологические изменения можно обнаружить при вскрытии. У животных наблюдаются иммунологические сдвиги. Однако далеко не все вирусы можно культивировать в организме животных;
2) культивирование вирусов в развивающихся куриных эмбрионах. Куриные эмбрионы выращивают в инкубаторе 7—10 дней, а затем используют для культивирования. В этой модели все типы зачатков тканей подвержены заражению. Но не все вирусы могут размножаться и развиваться в куриных эмбрионах.
В результате заражения могут происходить и появляться:
1) гибель эмбриона;
2) дефекты развития: на поверхности оболочек появляются образования – бляшки, представляющие собой скопления погибших клеток, содержащих вирионы;
3) накопление вирусов в аллантоисной жидкости (обнаруживают путем титрования);
4) размножение в культуре ткани (это основной метод культивирования вирусов).
Различают следующие типы культур тканей:
1) перевиваемые – культуры опухолевых клеток; обладают большой митотической активностью;
2) первично трипсинизированные – подвергшиеся первичной обработке трипсином; эта обработка нарушает межклеточные связи, в результате чего выделяются отдельные клетки. Источником являются любые органы и ткани, чаще всего – эмбриональные (обладают высокой митотической активностью).
Для поддержания клеток культуры ткани используют специальные среды. Это жидкие питательные среды сложного состава, содержащие аминокислоты, углеводы, факторы роста, источники белка, антибиотики и индикаторы для оценки развития клеток культуры ткани.
О репродукции вирусов в культуре ткани судят по их цитопатическому действию, которое носит разный характер в зависимости от вида вируса.
Основные проявления цитопатического действия вирусов:
1) размножение вируса может сопровождаться гибелью клеток или морфологическими изменениями в них;
2) некоторые вирусы вызывают слияние клеток и образование многоядерного синцития;
3) клетки могут расти, но делиться, в результате чего образуются гигантские клетки;
4) в клетках появляются включения (ядерные, цитоплазматические, смешанные). Включения могут окрашиваться в розовый цвет (эозинофильные включения) или в голубой (базофильные включения);
5) если в культуре ткани размножаются вирусы, имеющие гемагглютинины, то в процессе размножения клетка приобретает способность адсорбировать эритроциты (гемадсорбция).
4. Методы идентификации вирусов.
Выделенный вирус необходимо идентифицировать, т. е. установить, какой это вирус (семейство, род, вид).
Идентификацию неизвестного (выделенного) вируса проводят с помощью серологических реакций: РТГА, РТГАд, PH, РИФ, ИФА, РНГА, РСК, РДП и др.
При этом выделенный вирус используют как антиген и с ним в серологических реакциях применяют специфические сыворотки, содержащие антитела к заведомо известным вирусам. Та сыворотка, с которой выделенный вирус будет давать положительную реакцию (образование комплекса антиген + антитело), и укажет, какой это вирус.
Важно правильно выбирать серологическую реакцию. Каждая лаборатория предпочитает те или иные методы, основываясь на чувствительности, специфичности, скорости, удобствах и стоимости. Так, если вирус выделили на культуре клеток и он дает гемадсорбцию, то проще и быстрее его идентифицировать в РТГАд. Например, вирус ПГ-3 крупного рогатого скота дает гемадсорбцию с эритроцитами морской свинки и может быть идентифицирован в РТГАд. Вирусы, обладающие гемагглютинирующей активностью, целесообразно идентифицировать в РТГА.
Для идентификации выделенных вирусов используют РИФ, ИФА, РНГА, РДП, РСК. Наиболее универсальной и дающей более достоверные результаты при идентификации выделенных вирусов является PH, в которой используют те же живые чувствительные системы, на которых и был выделен исследуемый вирус.
Применение моноклональных антител с определенной специфичностью позволяет проводить идентификацию многих вирусов до уровня подтипов, штаммов или вариантов. Для обнаружения и идентификации вирусов кроме серологических реакций используют прямые методы идентификации вирусных нуклеиновых кислот: ДНК-, РНК-зонды, полимеразную цепную реакцию (ПЦР). С. их помощью выявляют нуклеиновые кислоты вирусов.