ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 06.12.2023
Просмотров: 18
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Лекция N 17
Метод симметричных составляющих
М етод симметричных составляющих относится к специальным методам расчета трехфазных цепей и широко применяется для анализа несимметричных режимов их работы, в том числе с нестатической нагрузкой. В основе метода лежит представление несимметричной трехфазной системы переменных (ЭДС, токов, напряжений и т.п.) в виде суммы трех симметричных систем, которые называют симметричными составляющими. Различают симметричные составляющие прямой, обратной и нулевой последовательностей, которые различаются порядком чередования фаз.
Симметричную систему прямой последовательности образуют (см. рис. 1,а) три одинаковых по модулю вектора и со сдвигом друг по отношению к другу на рад., причем отстает от , а - от .
Введя, оператор поворота , для симметричной системы прямой последовательности можно записать
.
Симметричная система обратной последовательности образована равными по модулю векторами и с относительным сдвигом по фазе на рад., причем теперь отстает от , а - от
(см. рис. 1,б). Для этой системы имеем
.
Система нулевой последовательности состоит из трех векторов, одинаковых по модулю и фазе (см. рис. 1,в):
.
При сложении трех указанных систем векторов получается несимметричная система векторов (см. рис. 2).
Любая несимметричная система однозначно раскладывается на симметричные составляющие. Действительно,
; | (1) |
; | (2) |
. | (3) |
Таким образом, получена система из трех уравнений относительно трех неизвестных , которые, следовательно, определяются однозначно. Для нахождения сложим уравнения (1)…(3). Тогда, учитывая, что , получим
. | (4) |
Для нахождения умножим (2) на , а (3) – на , после чего полученные выражения сложим с (1). В результате приходим к соотношению
. | (5) |
Для определения с соотношением (1) складываем уравнения (2) и (3), предварительно умноженные соответственно на и
. В результате имеем:
. | (6) |
Формулы (1)…(6) справедливы для любой системы векторов , в том числе и для симметричной. В последнем случае .
В заключение раздела отметим, что помимо вычисления симметричные составляющие могут быть измерены с помощью специальных фильтров симметричных составляющих, используемых в устройствах релейной защиты и автоматики.
Свойства симметричных составляющих токов
и напряжений различных последовательностей
Рассмотрим четырехпроводную систему на рис. 3. Для т ока в нейтральном проводе имеем
.
Тогда с учетом (4)
, | (7) |
т.е. ток в нейтральном проводе равен утроенному току нулевой последовательности.
Если нейтрального провода нет, то и соответственно нет составляющих тока нулевой последовательности.
Поскольку сумма линейных напряжений равна нулю, то в соответствии с (4) линейные напряжения не содержат составляющих нулевой последовательности.
Рассмотрим трехпроводную несимметричную систему на рис. 4.
Здесь
Тогда, просуммировав эти соотношения, для симметричных составляющих нулевой последовательности фазных напряжений можно записать
.
Если система ЭДС генератора симметрична, то из последнего получаем
. | (8) |
Из (8) вытекает:
-
в фазных напряжениях симметричного приемника отсутствуют симметричные составляющие нулевой последовательности; -
симметричные составляющие нулевой последовательности фазных напряжений несимметричного приемника определяются величиной напряжения смещения нейтрали; -
фазные напряжения несимметричных приемников, с оединенных звездой, при питании от одного источника различаются только за счет симметричных составляющих нулевой последовательности; симметричные составляющие прямой и обратной последовательностей у них одинаковы, поскольку однозначно связаны с соответствующими симметричными составляющими линейных напряжений.
При соединении нагрузки в треугольник фазные токи и могут содержать симметричные составляющие нулевой последовательности . При этом (см. рис. 5) циркулирует по контуру, образованному фазами нагрузки.
|
Сопротивления симметричной трехфазной цепи
для токов различных последовательностей
Если к симметричной цепи приложена симметричная система фазных напряжений прямой (обратной или нулевой) последовательностей, то в ней возникает симметричная система токов прямой (обратной или нулевой) последовательности. При использовании метода симметричных составляющих на практике симметричные составляющие напряжений связаны с симметричными составляющими токов той же последовательности. Отношение симметричных составляющих фазных напряжений прямой (обратной или нулевой) последовательности к соответствующим симметричным составляющим токов называется комплексным сопротивлением прямой
,
обратной
и нулевой
последовательностей.
Пусть имеем участок цепи на рис. 6. Для фазы А этого участка можно записать
. | (9) |
Тогда для симметричных составляющих прямой и обратной последовательностей с учетом, того, что , на основании (9) имеем
.
О тсюда комплексные сопротивления прямой и обратной последовательностей одинаковы и равны:
.
Для симметричных составляющих нулевой последовательности с учетом равенства соотношение (9) трансформируется в уравнение
,
откуда комплексное сопротивление нулевой последовательности
.
В рассмотренном примере получено равенство сопротивлений прямой и обратной последовательностей. В общем случае эти сопротивления могут отличаться друг от друга. Наиболее типичный пример – различие сопротивлений вращающейся машины для токов прямой и обратной последовательностей за счет многократной разницы в скольжении ротора относительно вращающегося магнитного поля для этих последовательностей.
Применение метода симметричных составляющих
для симметричных цепей
Расчет цепей методом симметричных составляющих основывается на принципе наложения, в виду чего метод применим только к линейным цепям. Согласно данному методу расчет осуществляется в отдельности для составляющих напряжений и токов различных последовательностей, причем в силу симметрии режимов работы цепи для них он проводится для одной фазы (фазы А). После этого в соответствии с (1)…(3) определяются реальные искомые величины. При расчете следует помнить, что, поскольку в симметричном режиме ток в нейтральном проводе равен нулю, сопротивление нейтрального провода никак ни влияет на симметричные составляющие токов прямой и обратной последовательностей. Наоборот, в схему замещения для нулевой последовательности на основании (7) вводится утроенное значение сопротивления в нейтральном проводе. С учетом вышесказанного исходной схеме на рис. 7,а соответствуют расчетные однофазные цепи для прямой и обратной последовательностей (рис. 7,б) и нулевой последовательности (рис. 7,в).
Существенно сложнее обстоит дело при несимметрии сопротивлений по фазам. Пусть в цепи на рис. 3 . Разложив токи на симметричные составляющие, для данной цепи можно записать
| (10) |
В свою очередь
| (11) |
Подставив в (11) значения соответствующих параметров из (10) после группировки членов получим