Файл: Образовательная автономная некоммерческая организация высшего образования Московский открытый институт.pdf

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 06.12.2023

Просмотров: 821

Скачиваний: 7

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

120
Различают кальдеры, обусловленные мощными эксплозивными извержениями, и кальдеры, возникновение которых связано с излиянием больших объемов базальтовой магмы. В первом случае обрушение вершинной части вулкана происходит за счет разрушения ее взрывом или дренажа подводящего канала. Такая кальдера может возникнуть и без вулканического конуса, например, при извержениях пемзы, туфов и пеплов по трещинам. Во втором случае кальдера возникает за счет оттока базальтовой магмы из периферических близповерхностных очагов и подводящих каналов.
Рис. 49. Андезитовый голоценовый лавовый поток на Кельком плато
(Кавказ):
1) лавовый купол; 2) борт потока; 3) напорные валы; 4) фронт потока
Рис. 50. Образование вулканотектонической впадины (вне масштаба):
1) субстрат; 2) магматический очаг; 3) кислые вулканические породы;
4) поверхность долавового рельефа; 5) просевшие блоки субстрата за
счет разгрузки очага и нагрузки лав на поверхности

121
Кроме кальдер существуют и крупные отрицательные формы рельефа, связанные с прогибанием под действием веса извергнувшегося вулканического материала и дефицитом давления на глубине, возникшим при разгрузке магматического очага. Такие структуры называются вулканотектоническими впадинами, депрессиями, грабенами (рис. 50).
Они могут иметь различную форму, диаметр в десятки километров и глубину в 1 – 3 км. Вулканотектонические впадины распространены очень широко и часто сопровождают образование мощных толщ игнимбритов (лат. «игнис» – огонь, «имбер» – ливень) – своеобразных кислых вулканических пород, имеющих различный генезис, бывают как лавовыми, так и образованными спекшимися или сваренными туфами.
Для них характерны линзовидные обособления стекла, пемзы, лавы, называемые фьямме (от итал. «фиамме» – пламя свечи), и туфовая или туфовидная структура основной массы. Как правило, крупные объемы игнимбритов связаны с неглубоко залегающими магматическими очагами, сформировавшимися за счет плавления и магматического замещения вмещающих пород. Быстрая разгрузка таких очагов, вызывающая бурные извержения, приводит к просадке обширных территорий.
1   ...   5   6   7   8   9   10   11   12   ...   15

Метаморфизм.
Горные породы после формирования могут попасть в такую геологическую обстановку, которая будет существенно отличаться от обстановки образования породы, и на нее будут оказывать влияние различные эндогенные силы: тепло, давление (нагрузка) вышележащих толщ, глубинные флюиды, растворы и газы, воды, водород, углекислота и др. Изменение магматических и осадочных пород в твердом состоянии под воздействием эндогенных факторов называется метаморфизмом
(греч. «метаморфо» – преобразуюсь, превращаюсь).
Все метаморфические процессы можно разделить на две группы. В одной из них химический состав метаморфизуемых пород не изменяется, т. е. преобразование происходит изохимически. Во второй группе наблюдается изменение состава пород за счет привноса или выноса компонентов. Такой процесс называется аллохимическим. Под воздействием процессов метаморфизма происходят перекристаллизация исходных пород, изменение минерального, а нередко и химического состава. Метаморфические процессы могут быть разной интенсивности, поэтому в природе наблюдаются все постепенные переходы от практически неизмененных или слабо измененных пород, первичная текстура, структура и состав которых сохранились, до пород, измененных настолько сильно, что восстановить их первичную природу невозможно.
Усиление степени метаморфизма, т. е. увеличение температуры (Т), давления (Р) и концентрации флюидов, приводит к изменению или распаду неустойчивых минералов на более устойчивые ассоциации. При изучении метаморфических пород необходимо восстановить их

122 первичную природу и условия образования, а также дать реконструкцию обстановки метаморфизма – давление, температуру и роль летучих компонентов. Это позволяет разобраться в мощнейших толщах архейских и протерозойских пород, слагающих главным образом фундамент древних платформ и отвечающих по возрастному интервалу большей части истории Земли – более 2,5 – 4,0 млрд лет. С этими же породами связаны очень важные в практическом отношении метаморфогенные месторождения, содержащие железные руды, графит, золото, уран, медь, кварциты, мраморы и др.
Факторы метаморфизма. Выше говорилось о том, что решающее влияние на метаморфизм горных пород оказывают давление, температура и флюиды.
Температура. Источниками тепла в земной коре являются распад радиоактивных элементов; магматические расплавы, которые, остывая, отдают тепло окружающим горным породам; нагретые глубинные флюиды; тектонические процессы и ряд других факторов.
Геотермический градиент, т. е. количество градусов на 1 км глубины, меняется от места к месту на Земном шаре, и разница может составлять почти 100 o
С. В пределах устойчивых, жестких блоков земной коры, например, на щитах древних платформ, геотермический градиент не превышает 6 – 10 o
С, в то время как в молодых растущих горных сооружениях может достигать почти 100 o
С. Температура резко ускоряет протекание химических реакций, способствует перекристаллизации вещества, сильно влияет на процессы минералообразования. Возрастание температуры приводит к обезвоживанию (дегидратации) минералов, формированию более высокотемпературных минеральных ассоциаций, лишенных воды, декарбонатизации известняков и т. д. Обычно метаморфические преобразования начинаются при температуре выше
300 o
С, а прекращаются, когда температура достигает точки плавления распространенных в данном месте горных пород.
Давление подразделяется на всестороннее (литостатическое), обусловленное массой вышележащих горных пород, и стрессовое, или одностороннее, связанное с тектоническими направленными движениями. Всестороннее литостатическое давление связано не только с глубиной, но также и с плотностью пород, и на глубине 10 км может превышать 200 мПа, а на глубине 30 км – 600 – 700 мПа. При геотермическом градиенте в 25 град/км плавление горных пород может начаться на глубине около 20 км. При высоких давлениях породы переходят в пластичное состояние. Одностороннее стрессовое давление лучше всего проявляется в верхней части земной коры складчатых зон и выражается в образовании определенных структурно-текстурных особенностей породы и специфических стресс-минералов, таких, как глаукофан, дистен и др. Стрессовое давление вызывает механические деформации горных пород, их дробление, рассланцевание, увеличение растворимости минералов в направлении давления. В подобные


123 милонитизированные зоны проникают флюиды, под воздействием которых породы испытывают перекристаллизацию.
Флюиды, к которым относятся H
2
O, CO
2
, CO, CH
4
, H
2
, H
2
S, SO
2
и другие, переносят тепло, растворяют минералы горных пород, переносят химические элементы, активно участвуют в химических реакциях и играют роль катализаторов. Значение флюидов иллюстрируется тем, что в «сухих системах», т. е. лишенных флюидов, даже при наличии высоких давлений и температур метаморфические изменения почти не происходят.
Основные типы метаморфизма. В общем виде метаморфизм подразделяется на региональный и локальный. В первом случае метаморфизму подвергаются огромные объемы горных пород, развитые, например, в горно-складчатых поясах, где на большой глубине достигаются высокие температуры и давления при участии глубинных флюидов, обеспечивающих протекание химических реакций. В результате образуются обширные площади, сложенные метаморфическими породами одного типа. Первичная порода может сильно изменить свой химический состав, особенно под действием летучих веществ. Одни элементы выносятся и, наоборот, происходит привнос других элементов. Такие процессы называются метасоматозом, а образовавшиеся породы – метасоматическими.
В зависимости от температурных условий региональный метаморфизм и породы подразделяются на три группы, каждая из которых характеризуется вполне определенным набором минералов: I – низкотемпературная (300 – 500 o
С); II – среднетемпературная (500 – 650 o
С); III – высокотемпературная (более 650 o
С). В глубинных зонах подвижных областей нередко создаются экстремальные условия по давлению, температуре и концентрации летучих, при которых важную и активную роль начинают приобретать расплавы. Такие процессы называются ультраметаморфическими. Метаморфизм, идущий с возрастанием температуры и приводящий к появлению все более высокотемпературных минеральных ассоциаций, называется прогрессивным, а с понижением – регрессивным. Он часто приводит к экзотермическим реакциям, процессам гидратации и карбонатизации, с образованием низкотемпературных минеральных ассоциаций.
Локальный метаморфизм по сравнению с региональным характеризуется проявлением на гораздо меньших площадях и связан с какими-то местными активными зонами, например, благодаря тепловому и флюидному воздействию интрузивов на вмещающие породы, в которых наблюдаются метаморфические изменения. Такой тип метаморфизма называется контактовым, или контактово-термальным. С интрузивами нередко связан и локальный метасоматоз, обязанный отделению от магм различных флюидов – H
2
O, CO
2
, H
2
, HC1 и других, которые вступают в химические реакции с вмещающими породами, образуя специфические по структурам и текстурам метасоматиты. Метасоматоз такого рода


124 происходит в условиях низких температур и давлений, и постмагматические растворы воздействуют не только на вмещающие, но и на породы самого интрузивного тела. В узких зонах разломов возникает резкое увеличение давления, происходит катаклаз (раздробление) пород, не сопровождающийся, как правило, повышением температуры, а если последняя увеличивается, то могут возникнуть новые низкотемпературные минералы – хлорит, серицит, тальк и др. Подобный метаморфизм называется динамометаморфизмом, стрессовым или дислокационным. Разная степень раздробленности пород приводит к образованию тектонических брекчий, катаклазитов, милонитов.
Следует отметить еще один тип метаморфизма – ударный, возникающий при воздействии на горные породы мощной ударной волны, вызванной падением на Землю крупных метеоритов, при котором мгновенно выделяется огромная энергия. При образовании метеоритного кратера (астроблемы) породы разрушаются, дробятся, перемещаются, плавятся и испаряются. Сейчас на поверхности Земли известно около 200 крупных астроблем, но, конечно, их гораздо больше.
Перекристаллизация (бластез) горных пород при метаморфизме не сопровождается плавлением, и возникают структуры, называемые кристаллобластическими, или порфиробластическими, когда выделяются крупные минералы на мелкозернистом фоне.
Текстуры метаморфических пород подразделяются на две группы.
В одной из них преобладают ориентированные текстуры, связанные с действием давления, при котором плоские и вытянутые минералы ориентируются в пределах какой-либо плоскости. В другой – минералы в породах распределены неравномерно и преобладают пятнистые, массивные, полосчатые и другие текстуры.
Понятие о фациях метаморфизма. Породы, образовавшиеся в результате регионального метаморфизма, подразделяются на основе выделения минеральных фаций. Если порода принадлежит какой-то определенной фации, то состав минералов в ней будет полностью зависеть от состава исходной породы. Парагенезис (сообщество) минеральных ассоциаций может быть устойчив в нескольких фациях, поэтому надо опираться на типоморфные минералы, присущие узкому интервалу температур и давлений.
Чаще всего выделяют три наиболее важные фации – зеленосланцевую, амфиболитовую и гранулитовую. Первая фация принадлежит к низкой ступени метаморфизма и самым характерным представителем пород этой фации являются зеленые сланцы, формирующиеся по базальтам и их туфам и содержащие в своем составе хлорит, зеленую роговую обманку, эпидот, т. е. минералы с зеленым оттенком. Наличие голубой роговой обманки или глаукофана характеризует низкие температуры, порядка 300 – 400 o
С, но очень высокие давления – 12 10 8
Па (до 12 кбар). Голубые (глаукофановые) сланцы маркируют узкие зоны аномально высоких давлений, связанные с


125 действием односторонне направленного давления (бокового сжатия) в зонах разломов.
Метаморфические породы амфиболитовой фации относятся уже к средней ступени метаморфизма, а индекс-минералами являются амфибол, слюды (биотит и мусковит), реже гранаты. Для этой фации характерны такие породы, как разнообразные кристаллические сланцы, гнейсы, амфиболиты.
И наконец, высшая гранулитовая фация метаморфизма, названная так по типичной породе – гранулиту, состоящая из кварца, полевых шпатов и граната, реже пироксенов, характеризуется высокими значениями давлений и температур. В этих условиях не могут существовать минералы, содержащие воду, и поэтому для гранулитовой фации характерной породой является эклогит – очень плотная и тяжелая порода, состоящая из граната и пироксена. Гранулиты и эклогиты широко распространены в архейских и протерозойских отложениях.
Современные и новейшие тектонические движения и методы
их изучения.
Мы привыкли говорить «земная твердь». Однако земная поверхность не остается неподвижной, она «дышит». Одни ее участки в настоящее время испытывают поднятия, другие медленно опускаются.
Судить об этих движениях стало возможным только всего лишь несколько веков назад, когда начали использовать точные инструментальные геодезические методы. Сначала это были простые наблюдения, например, делали засечки, отметины на прибрежных скалах морей и озер. Так, известный русский путешественник и геолог И. Д.
Черский сделал подобные метки на побережье Байкала, по которым можно было судить о движениях относительно уровня озера.
Знаменитый наглядный пример современных тектонических движений земной поверхности известен в Италии, в маленьком городке
Поццуоли, расположенном на берегу Неаполитанского залива (рис. 51). В этом городке находятся развалины городского рынка с часовней, построенной около 2000 лет назад, которую называют «храмом
Сераписа». После возведения рыночная площадь вместе с храмом начала медленно опускаться, и в XIII в. все строения погрузились под уровень моря. В таком виде они находились около трех столетий, после чего местность снова начала подниматься, и к 1800 г. практически все развалины вместе с фундаментами были осушены. В результате длительного пребывания под водой мраморные колонны храма оказались изъеденными камнеточцами до высоты 5,71 м над полом храма.

126
В дальнейшем вновь началось опускание, и в 1954 г., по свидетельству Г. П. Горшкова, уровень воды составлял уже 2,5 м над полом храма, иными словами, скорость опускания была около 2 см/год.
Поццуоли расположен в вулканической области, недалеко находится вулкан Везувий, поэтому неудивительно, что нижняя часть колонн в храме не тронута моллюсками, так как на высоту более трех метров колонны были засыпаны вулканическим пеплом и туфом. Таким образом, это прекрасный пример современных тектонических движений.
Рис. 51. Изменение высоты поверхности и основания храма Сераписа
относительно уровня моря с 79г. н. э. и до настоящего времени (по А. А.
Никонову)
Различают современные тектонические движения, происходящие в настоящее время и происходившие несколько веков назад: молодые, или новейшие, отвечающие голоцену, т. е. периоду времени длительностью в
10 000 лет, а также неотектонические, охватывающие интервал, начиная