Файл: Географическая информационная система, гис) система сбора, хранения, анализа и графической визуализации пространственных (географических) данных и связанной с ними информации о необходимых объектах.docx
ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 09.12.2023
Просмотров: 43
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Геоинформационная система (географическая информационная система, ГИС) — система сбора, хранения, анализа и графической визуализации пространственных (географических) данных и связанной с ними информации о необходимых объектах.
Понятие геоинформационной системы также используется в более узком смысле — как инструмента (программного продукта), позволяющего пользователям искать, анализировать и редактировать как цифровую карту местности, так и дополнительную информацию об объектах.
Геоинформационная система может включать в свой состав пространственные базы данных (в том числе под управлением универсальных СУБД), редакторы растровой и векторной графики, различные средства пространственного анализа данных. Применяются в картографии, геологии, метеорологии, землеустройстве, экологии, муниципальном управлении, транспорте, экономике, обороне и многих других областях. Научные, технические, технологические и прикладные аспекты проектирования, создания и использования геоинформационных систем изучаются геоинформатикой.
Классификация
По территориальному охвату геоинформационные системы подразделяют на глобальные (англ. global), субконтинентальные, национальные, зачастую имеющие статус государственных, региональные (regional), субрегиональные, локальные, или местные (local). В некоторых случаях такие территориальные ГИС могут быть размещены в открытом доступе в сети Интернет и называются геопорталами.
По предметной области информационного моделирования выделяются городские (муниципальные) (urban GIS), недропользовательские, горно-геологические информационные системы (ГГИС), природоохранные (environmental) и т. п.; среди них особое наименование, как особо широко распространённые, получили земельные информационные системы.
Также геоинформационные системы могут быть классифицированы по проблемной ориентации — решаемым научным и прикладным задачам. Таковыми задачами могут быть инвентаризация ресурсов (в том числе кадастр), анализ, оценка, мониторинг, управление и планирование, поддержка принятия решений, геомаркетинг. Кроме того, интегрированные геоинформационные системы совмещают функциональные возможности и систем цифровой обработки изображений (данных дистанционного зондирования) в единой интегрированной среде.
Различают также
полимасштабные, или масштабно-независимые геоинформационные системы (multiscale), основанные на множественных, или полимасштабных представлениях пространственных объектов, обеспечивая графическое или картографическое воспроизведение данных на любом из избранных уровней масштабного ряда на основе единственного набора данных с наибольшим пространственным разрешением;
пространственно-временные геоинформационные системы (spatio-temporal), оперирующие пространственно-временными данными.
Геоинформационный проект
Геоинформационный проект — наполнение геоинформационной системы пространственными данными и сведениями об объектах в привязке к пространственным данным. Проект может быть реализован на какой-либо из тиражируемых геоинформационных систем, либо такая система может быть разработана специально для геоинформационного проекта. Типичные этапы геоинформационного проекта:
-
Предпроектные исследования, включающие изучение функциональных требований, оценку функциональных возможностей геоинформационных систем, технико-экономическое обоснование; -
Системное проектирование, включая стадию пилотного проекта, при необходимости — разработку геоинформационных систем или расширение существующих; -
Тестирование на небольшом территориальном фрагменте, или тестовом участке, прототипирование, или создание опытного образца, или прототипа (prototype). -
Внедрение. -
Эксплуатация.
Представление данных
Данные в геоинформационных системах описывают, как правило, реальные объекты, такие как дороги, здания, водоемы, лесные массивы. Реальные объекты можно разделить на две абстрактные категории: дискретные (дома, территориальные зоны) и непрерывные (рельеф, уровень осадков, среднегодовая температура). Для представления этих двух категорий объектов используются векторные и растровые данные.
Растровые данные хранятся в виде наборов величин, упорядоченных в форме прямоугольной сетки. Ячейки этой сетки называются пикселями. Наиболее распространенным способом получения растровых данных о поверхности Земли является дистанционное зондирование, проводимое при помощи спутников и БПЛА. Хранение растровых данных может осуществляться в графических форматах, например TIFF или JPEG.
Векторные данные обычно имеют намного меньший размер, чем растровые. Их легко трансформировать и проводить над ними бинарные операции. Векторные данные позволяют проводить различные типы пространственного анализа, к примеру поиск кратчайшего пути в дорожной сети. Наиболее распространёнными типами векторных объектов являются точки, полилинии (ломаные), полигоны (многоугольники).
Точки используются для обозначения географических объектов, для которых важно местоположение, а не их форма или размеры. Возможность обозначения объекта точкой зависит от масштаба карты. В то время как на карте мира города целесообразно обозначать точечными объектами, то на карте города сам город представляется в виде множества объектов. В ГИС точечный объект изображается в виде некоторой геометрической фигуры небольших размеров (квадратик, кружок, крестик), либо пиктограммой, передающей тип реального объекта.
Полилинии служат для изображения линейных объектов. Полилиния — ломаная линия, составленная из отрезков прямых. Полилиниями изображаются дороги, железнодорожные пути, реки, улицы, водопровод. Допустимость изображения объектов полилиниями также зависит от масштаба карты. Например, крупная река в масштабах континента вполне может изображаться линейным объектом, тогда как уже в масштабах города требуется её изображение площадным объектом. Характеристикой линейного объекта является длина.
Многоугольники (калька от термина «полигоны», который также может использоваться в данном случае) служат для обозначения площадных объектов с чёткими границами. Примерами могут служить озера, парки, здания, страны, континенты. Характеризуются площадью и длиной периметра.
Семантические данные могут быть привязаны к векторным: например, на карте территориального зонирования к площадным объектам, представляющим зоны, может быть привязана характеристика типа зоны. Структуру и типы данных определяет пользователь. На основе численных значений, присвоенных векторным объектам на карте, может строиться тематическая карта, на которой эти значения обозначены цветами в соответствии с цветовой шкалой, либо окружностями разного размера. Непрерывные поля величин могут быть описаны векторными данными. Поля при этом изображаются в виде изолиний или контурных линий. Одним из способов представления рельефа является нерегулярная триангуляционная сетка (англ. TIN, triangulated irregular networks). Такая сетка формируется множеством точек с привязанными значениями (в данном случае высота). Значения в произвольной точке внутри сетки получаются путём интерполяции значений в узлах треугольника, в который попадает эта точка.
Анализ геопространственных данных
Пространственные данные составляют основу информационного обеспечения геоинформационных систем. Современный анализ геопространственных данных позволяет совмещать геоинформационную систему с бизнес-аналитикой, что приводит к качественному, быстрому принятию решений за счет сокращения времени на поиск и анализ необходимой информации. Пространственный анализ позволяет использовать карту как одно из стандартных измерений, наподобие времени.
Типичные вопросы, на которые может ответить геоинформационная система:
-
«Что находится в…?» (определяется место). -
«Где это находится?» (пространственный анализ). -
«Что изменилось начиная с…?» (определить временные изменения на определённой площади). -
«Какие пространственные структуры существуют?» -
«Что, если…?» (моделирование, что произойдет, если добавить новый объект).
История ГИС
Пионерский период (поздние 1950е — ранние 1970е гг.)
Исследование принципиальных возможностей, пограничных областей знаний и технологий, наработка эмпирического опыта, первые крупные проекты и теоретические работы.
-
Появление электронных вычислительных машин (ЭВМ) в 50-х годах. -
Появление цифрователей, плоттеров, графических дисплеев и других периферийных устройств в 60-х. -
Создание программных алгоритмов и процедур графического отображения информации на дисплеях и с помощью плоттеров. -
Создание формальных методов пространственного анализа. -
Создание программных средств управления базами данных.
Период государственных инициатив (нач. 1970е — нач. 1980е гг.)
Государственная поддержка ГИС стимулировала развитие экспериментальных работ в области ГИС, основанных на использовании баз данных по уличным сетям:
-
Автоматизированные системы навигации. -
Системы вывоза городских отходов и мусора. -
Движение транспортных средств в чрезвычайных ситуациях и т. д.
Период коммерческого развития (ранние 1980е — настоящее время)
Широкий рынок разнообразных программных средств, развитие настольных ГИС, расширение области их применения за счет интеграции с базами непространственных данных, появление сетевых приложений, появление значительного числа непрофессиональных пользователей, системы, поддерживающие индивидуальные наборы данных на отдельных компьютерах, открывают путь системам, поддерживающим корпоративные и распределенные базы геоданных.
Пользовательский период (поздние 1980е — настоящее время)
Повышенная конкуренция среди коммерческих производителей геоинформационных технологий услуг дает преимущества пользователям ГИС, доступность и «открытость» программных средств позволяет использовать и даже модифицировать программы, появление пользовательских «клубов», телеконференций, территориально разобщенных, но связанных единой тематикой пользовательских групп, возросшая потребность в геоданных, начало формирования мировой геоинформационной инфраструктуры.
Области применения ГИС
-
Управление земельными ресурсами, земельные кадастры. Для решения проблем, имеющих пространственную привязку и начали создавать ГИС. Типичные задачи — составление кадастров, классификационных карт, определение площадей участков и границ между ними и т. д. -
Инвентаризация, учет, планирование размещения объектов распределенной производственной инфраструктуры и управление ими. Например, нефтегазодобывающие компании или компании, управляющие энергетической сетью, системой бензоколонок, магазинов и т. п. -
Проектирование, инженерные изыскания, планировка в строительстве, архитектуре. Такие ГИС позволяют решать полный комплекс задач по развитию территории, оптимизации инфраструктуры строящегося района, требующегося количества техники, сил и средств. -
Тематическое картографирование. -
Управление наземным, воздушным и водным транспортом. ГИС позволяет решать задачи управления движущимися объектами при условии выполнения заданной системы отношений между ними и неподвижными объектами. В любой момент можно узнать, где находится транспортное средство, рассчитать загрузку, оптимальную траекторию движения, время прибытия и т. п. -
Управление природными ресурсами, природоохранная деятельность и экология. ГИС помогает определить текущее состояние и запасы наблюдаемых ресурсов, моделирует процессы в природной среде, осуществляет экологический мониторинг местности. -
Геология, минерально-сырьевые ресурсы, горнодобывающая промышленность. ГИС осуществляет расчеты запасов полезных ископаемых по результатам проб (разведочное бурение, пробные шурфы) при известной модели процесса образования месторождения. -
Чрезвычайные ситуации. С помощью ГИС производится прогнозирование чрезвычайных ситуаций (пожаров, наводнений, землетрясений, селей, ураганов), расчет степени потенциальной опасности и принятие решений об оказании помощи, расчет требуемого количества сил и средств для ликвидации чрезвычайных ситуаций, расчет оптимальных маршрутов движения к месту бедствия, оценка нанесенного ущерба. -
Военное дело. Решение широкого круга специфических задач, связанных с расчетом зон видимости, оптимальных маршрутов движения по пересеченной местности с учетом противодействия и т. п. -
Сельское хозяйство. Прогнозирование урожайности и увеличения производства сельскохозяйственной продукции, оптимизация ее транспортировки и сбыта