Файл: Механизм действия пав в качестве эмульгаторов и деэмульгаторов. Области применения в нефтегазовой отрасли.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 11.12.2023

Просмотров: 46

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Наиболее эффективными и использующимися в наибольших количествах из применяющихся в настоящее время деэмульгаторов являются неионогенные ПАВ.
Неионогенные деэмульгаторы — высокоэффективные соединения, неспособные к ионизации в растворах и находящиеся в них в молекулярной форме.
Неионогенные деэмульгаторы являются блок-сополимерами окисей этилена и пропилена, гидрофильная часть молекулы, которой является сополимером окиси этилена (СН2OCH2), а гидрофобная — как правило — сополимером окиси пропилена.
Для получения гидрофобного сополимера используют вещества с молекулярной массой менее 200 и подвижным атомом активного водорода.
Исходными веществами для синтеза блок-сополимеров с одно гидрофобной и одной гидрофильной группой служат чаще всего одноатомные спирты:



Блок-сополимеры с одной центральной гидрофобной и двумя концевыми гидрофильными группами получают из двухатомных спиртов или фенолов, двух основных кислот:



Маслорастворимые блок-сополимеры с одной центральной гидрофильной и двумя концевыми гидрофобными группами получают:



Процессы оксиэтилирования и оксипропилирования осуществляют в реакторах периодического действия в присутствии катализаторов при 120-135°С.
В наиболее общем виде реакция получения неионогенных деэмульгаторов на основе окиси этилена и структурная формула конечного продукта представлена ниже:


Деэмульгирующую способность неионогенных соединений можно регулировать, изменяя количество молекул присоединяемой окиси этилена. При удалении окись-этиленовой цепи растворимость неионогенного вещества в воде увеличивается. Неионогенным веществам можно придать также и гидрофобные свойства добавкой окиси пропилена. Таким образом, неионогенные вещества можно получить с различными свойствами, широко изменяя соотношения между гидрофобной и гидрофильной частями деэмульгатора (гидрофильно-липофильный баланс). В зависимости от соотношения гидрофобной и гидрофильной частей молекулы можно увеличить или уменьшить сродство деэмульгатора к воде или к нефти, а также изменить его поверхностную активность.

Известно огромное количество деэмульгаторов этого типа: дисолваны, сепароли, проксалины, СНПХ, ДИН и др., многие из которых были испытаны и применялись в промышленном масштабе на промыслах Татарстана и других нефтедобывающих регионах.

2.3 Совместное действие различных деэмульгаторов

Возможны три случая совместного действия на нефтяную эмульсию смеси двух и более деэмульгаторов: 1) аддитивность, т.е. суммирование их деэмульгирующей способности; 2) антагонизм, т.е. один ослабляет действие другого; 3) синергизм, т.е. один усиливает действие другого.
Ниже приведён график концентрации двух деэмульгаторов (общее их количество принято за 100%), которое вызывает при данных условиях наиболее быстрое и полное разрушение эмульсии в отсутствие второго деэмульсатора.



а1 — аддитивность, а2 — антагонизм; a3 — синергизм;

С1 и C2 — концентрации обоих деэмульгаторов, выраженные в процентах.
В случае аддитивности попытка добиться разрушения эмульсии одним деэмульгатором в концентрации меньше, чем 100%, потребует добавления пропорционального количества второго, так, если одного взято 70% от необходимой концентрации, то второго потребуется добавить 30% (в сумме 100%), и т.д.
При антагонизме оказывается, что при 70% концентрации одного из них нужно уже не 30% концентрации другого, а больше, например, 55%. Таким образом, сумма их парциальных концентраций станет больше 100%.
При синергизме для тех же 70% от концентрации одного деэмульгатора достаточно добавить только 15% от концентрации второго (в сумме меньше 100%), чтобы получить быстрое разрушение эмульсии.
Синергизм, антагонизм и аддитивность деэмульгаторов в нефтедобывающей промышленности изучены пока недостаточно.

2.4 Применение деэмульгаторов

Содержание поверхностно-активных веществ в товарных продуктах деэмульгаторов составляет 50-80%, остальное — растворитель и примеси. В качестве растворителя используются спирты (бутиловый, изопропиловый, метиловый) и ароматические углеводороды. По внешнему виду реагенты представляют собой легкоподвижные или вязкие жидкости, что определяется, в основном, типом и количеством содержащегося в них растворителя. Различают водо- и нефтерастворимые деэмульгаторы.


Растворимость реагентов в воде обусловлена гидратацией полиоксиэтиленовых цепей вследствие возникновения водородных связей между молекулами воды и эфирными атомами кислорода. Гидрофобные свойства молекул определяются количеством и длиной полиоксипропиленовых цепей. При низком содержании в молекулах окиси этилена неионогенные ПАВ теряют способность растворяться в воде. Существенное влияние на растворимость реагентов в воде оказывает температура. С возрастанием температуры нагрева увеличивается степень дегидратации полиоксиэтиленовых цепей за счет разрушения водородных связей, и водный раствор мутнеет и даже расслаивается на две фазы. С увеличением степени оксиэтилирования повышается температура дегидратации молекул ПАВ и, следовательно, температуры помутнения. Присутствие электролитов в растворе также способствует разрушению водородных связей и дегидратации молекул ПАВ, поэтому растворимость реагентов в минерализованной воде снижается. Нефтерастворимость реагентов в минерализованной воде снижается. Нефтерастворимые (или по-другому маслорастворимые) деэмульгаторы в воде не растворяются, но достаточно хорошо в ней диспергируются. По способности растворяться в нефти принципиальных различий между водо-и нефтерастворимыми реагентами нет. В ней практически все реагенты растворяются недостаточно хорошо. Структурные формулы деэмульгаторов отличаются большим разнообразием и составляют обычно секрет производящих деэмульгаторы фирм.
Хорошие деэмульгаторы должны иметь следующие основные свойства: высокую поверхностную активность; флоккуляционную способность; коалесцирующую способность; смачивающую способность по отношению к твердым частицам. Для получения этих свойств и обеспечения комбинированного действия смешивают несколько деэмульгаторов, в результате чего и образуют товарный продукт, применяемый на промыслах. Выбор деэмульгаторов, наиболее эффективных для данной нефти, обрабатываемой на конкретном объекте, осуществляется, как правило, методом «бутылочных проб», хотя имеется много противников этого метода. Попытки характеризовать и классифицировать эмульсии и деэмульгаторы таким образом, чтобы выделить общие факторы, определяющие свойства деэмульгаторов, которые необходимы для обработки эмульсии данного типа, пока не увенчались успехом. Информация, полученная при выполнении этих работ, обширна и недостаточна для окончательных выводов. Вместе с тем считается, что специалист, хорошо знакомый с историей разработки месторождения, может быстро подобрать наиболее эффективный деэмульгатор. Однако этот метод не даст должных результатов, когда свойства систематически изменяются, что случается довольно часто.

На сегодня на промыслах эксплуатируются принципиально разные технологические схемы сбора и подготовки нефти, условия обработки эмульсий и ее результаты значительно изменяются от объекта к объекту, хотя обработке подвергается практически одна и та же эмульсия. Разнообразие технологических схем и применяемого при этом оборудования, привели к тому, что деэмульгатор подбирается для каждого объекта в отдельности.
Большинство химических компаний обучают и хорошо оснащают своих представителей, занимающихся подбором деэмульгаторов и выводом установок на оптимальный режим эксплуатации. Владельцы нефтяных участков не занимаются этими вопросами сами и приглашают представителей других фирм для выбора деэмульгаторов и выработки рекомендаций по их применению. Необходимо вместо выбора деэмульгаторов из сотен их наименований, пригодных для использования только на том или ином конкретном объекте со всеми его технологическими особенностями, разработать оптимальную технологическую схему подготовки нефти, создать на этой основе эффективную дегидрирующую аппаратуру и использовать деэмульгатор, соответствующий виду обрабатываемой нефти.
Деэмульсация нефти в промысловых условиях нередко предусматривает комбинированное применение деэмульгаторов, смешение с нефтью, нагрев, электрообработку и отстаивание. Поскольку деэмульгатор должен воздействовать на каждую каплю пластовой воды с целью дестабилизации межфазной пленки, необходимо тщательное его смешение с обрабатываемой эмульсией сразу же после ее добычи или в процессе добычи нефти при непрерывном его дозировании. Последний метод применяется наиболее часто, так как время для концентрации молекул эмульгатора на поверхности раздела фаз, приводящей к образованию оболочки и стабилизации эмульсии, в этом случае минимально и, кроме того, обеспечивается максимальное смешение и увеличивается продолжительность воздействия деэмульгатора на эмульсию. Для выполнения этого требования в ряде случаев деэмульгатор подается на забой скважин, что способствует наиболее эффективной обработке эмульсии. Целесообразность таких решений обусловлена: интенсивным перемешиванием эмульсии с реагентом, что особенно важно при коротких выкидных линиях, не обеспечивающих достаточного смешения; высокой забойной температурой, что в сочетании с деэмульгатором снижает степень эмульсеобразования; контактом химических реагентов с каплями до стабилизации эмульсии; что также предотвращает образование стойких эмульсий; снижением вязкости эмульсии (эмульсии имеют более высокую вязкость по сравнению с образующими се компонентами, поэтому разрушение эмульсии уменьшает нагрузку на насосы, снижает давление и увеличивает добычу нефти).

Однако введение реагентов на забой скважин представляет собой существенные технические трудности. Это делает метод полезным только в отдельных случаях. Более широко применяется введение реагента в выкидные линии, в точке около устья скважин. Однако при большом числе скважин это тоже практически непростая проблема, так как стоимость дозировочных насосов довольно высокая, а их обслуживание требует затрат времени. Поэтому нередко принимаются решения об установке дозаторов, общих для группы скважин. В этом случае дозатор устанавливается на наиболее высокопродуктивной скважине, характеризуемой тонкодисперсной эмульсией и работающей непрерывно, ее выкидная линия соединяется с коллектором, к которому присоединены выкидные линии других скважин. В наиболее общем случае дозировка реагента осуществляется на головном участке сборного трубопровода, что также гарантирует обработку продукции всех скважин. Для установки одного дозатора требуются меньшие капитальные вложения и обеспечиваются минимальные эксплуатационные затраты. Это создает определенную экономию средств, хотя и имеет место повышенный расход деэмульгатора из-за недостаточно длительного смешения.
Использование трубопроводов в качестве эффективных технологических аппаратов, в которых возможно полное разрушение сформированных эмульсий вплоть до расслоения потока на нефть и воду, а также улучшение качества ранее деэмульгированной нефти в процессе ее транспортирования, как это делается в Татарстане.
Считается, что эффективное смешение обеспечивается в большинстве случаев уже при транспортировании эмульсии по выкидным и сборным линиям, а также при прохождении через сепараторы и делители потока.
Таким образом, обзор литературы показал, что химическая деэмульсация с применением деэмульгаторов является практически необходимым элементом технологии подготовки нефти. При этом разнообразие свойств нефтей, систем обустройства нефтяных месторождений и деэмульгаторов выдвигает оптимизацию их применения в качестве важной задачи, как с точки зрения технологических проблем, так и сокращения затрат на реагенты.




Литература:


  1. В.П.Тронов Промысловая подготовка нефти.

  2. Геритц Б. Способы разрушения эмульсии сырой нефти. Нефтяное хозяйство.

  3. Ресурсы интернета http://liveoil.ru, http://www.promhim-sfera.ru, http://сайтнефтиигаза.рф