ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 11.12.2023
Просмотров: 99
Скачиваний: 1
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Применительно к ХТС произвольной сложности, перед ее расчетом необходимо решить следующие задачи:
- определить наличие в ХТС групп аппаратов, рассчитываемых совместно (комплексов) и выделить эти комплексы;
- определить предварительную последовательность расчета комплексов и аппаратов, не входящих в комплексы;
- для каждого комплекса определить оптимальное множество разрываемых потоков и последовательность расчета комплекса;
- определить окончательную последовательность расчета всей ХТС.
Основные методы расчета хтс.
Основной задачей расчета ХТС при заданных параметрах функционирования технологических операторов, является нахождение параметров состояния потоков, связывающих указанные технологические операторы. Методы решения этой задачи обычно разделяют на две группы: интегральные (они еще называются композиционными) и декомпозиционные. В свою очередь, в зависимости от принципов построения моделей, каждый из методов имеет различные способы расчетов.
Интегральные и декомпозиционные методы расчета хтс.
Суть интегральных методов расчета ХТС заключается в объединении систем уравнений, описывающих работу отдельных аппаратов, в одну большую систему уравнений с дальнейшим решением этой системы.
При декомпозиционном методе расчета ХТС представляется в виде отдельных блоков, соответствующих элементам ХТС, и, расчет ХТС сводится к последовательному расчету отдельных блоков. В данном случае размерность каждой отдельной системы уравнений, соответствующей блоку ХТС, относительно невелика.
Суть декомпозиционного метода расчета заключается в том, что ХТС представляется в виде отдельных блоков, соответствующих элементам ХТС. Расчет ХТС сводится к последовательному расчету отдельных блоков. В этом случае, при расчете отдельного модуля требуется рассчитать только ограниченное количество уравнений, соответствующих конкретному модулю, т.е. выполнить проверочный расчет конкретного процесса. Следует отметить, что при наличии ограниченного количества возможных модулей ХТС, их алгоритмы расчета давно разработаны и приведены в специальной литературе и в виде компьютерных программ (данные алгоритмы также преподавались в курсе "Моделирование ХТП"). Именно поэтому, вследствие своей универсальности, наибольшее распространение, как при расчете сложных, так и простых ХТС, получил декомпозиционный способ расчета.
Как известно, большинство ХТС имеет рециркуляционные соединения, образующие замкнутую ХТС, непосредственный расчет которой с помощью декомпомпозиционного принципа невозможен. Для решения таких систем их структуру сначала необходимо привести к разомкнутому виду, и, только затем производить расчет с использованием декомпозиционногоспособа расчета. Однако, не смотря на то, что теория и алгоритмы анализа структуры ХТС с целью определения оптимального множества разрываемых связей с целью перевода структуры из замкнутого к разомкнутому виду, и нахождения оптимальной последовательности расчета ХТС, достаточно хорошо разработаны, каждая ХТС сама по себе уникальна. В связи с этим, в конкретном случае могут возникнуть проблемы нахождения оптимального множества разрываемых связей и оптимальной последовательности расчета декомпозиционным способом.
Существуют разновидности декомпозиционного способа расчета замкнутых ХТС, наиболее простым из которых является итерационный способ расчета. Рассмотрим итерационный способ расчета замкнутых ХТС на примере простейшей схемы, представленной на рис.
Как видно на рисунке простейшая замкнутая ХТС состоит из двух модулей (А и В), связанных четырьмя технологическими связями, из которых связь 4 является рециркуляционной. Исходя из исходной задачи расчета ХТС, исходными данными для расчета указанной ХТС будут параметры функционирования элементов А и В, а также параметры входящего в ХТС потока номер 1. Однако, провести расчет модуля А с целью получения параметров потока 2 невозможно, т.к. неизвестны параметры потока 4. Расчет модуля В произвести также невозможно, т.к. неизвестен поток 2, входящий в этот модуль. Таким образом, непосредственное применение декомпозиционного способа расчета этой замкнутой ХТС невозможно.
Для того чтобы декомпозиционный способ можно было применить, необходимо привести ХТС из замкнутого вида к разомкнутому. Для этого, в случае указанной ХТС, можно "разорвать" любой поток, входящий в рецикл, т.е. поток 2 или 4. В случае разрыва потока 4 (см.Рис.4.1б), выходящего из модуля В и входящего в модуль А, образуется новый входящий в ХТС и в модуль А поток 4'. В связи с тем, что деление потока на 4 и 4' является условным (применяемым только для цели перевода структуры ХТС из замкнутого к разомкнутому виду), то при применении итерационного способа расчета, в место разрыва помещается дополнительный модуль – итерационный блок (
ИБ) (см.Рис.4.1в). В этом случае, исходя из исходной задачи расчета ХТС, исходными данными для расчета указанной ХТС будут являться параметры функционирования элементов А и В, а также параметры входящих потоков 1 и 4'. Первоначальные параметры потока 4' могут определяться с применением какого-либо алгоритма расчета и на основании заданных исходных данных.
С указанным набором исходных данных появляется возможность выполнить ПЕРВЫЙ расчет ХТС, т.е. определить параметры потока 2, зная которые рассчитать параметры потоков 3 и 4. В данном случае, параметры потока 4 будут отличаться от параметров потока 4', поэтому, итерационный блок, проанализировав оба набора данных (потоков 4 и 4'), рассчитает суммарную погрешность и присвоит новые значения параметров потока 4'. Так как новые значения потока 4' будут формироваться итерационным блоком с учетом расчетных параметров потока 4, то при выполнении ВТОРОГО расчета ХТС, суммарная погрешность будет меньше, чем при первом расчете. Далее, циклические расчеты (итерации) проводятся до тех пор, пока значения суммарной погрешности не будут ниже требуемой точности расчета.
Итерационный метод расчета ХТС обычно применяется для расчета относительно простых ХТС, т.к. применение данного метода для сложных ХТС является не достаточно эффективным, т.к. предусматривает последовательные приближения искомых параметров потоков. В связи с тем, что элементы ХТС, исходя из их физико-химической природы, могут функционировать лишь в заданных интервалах изменения параметров, применение итерационного метода иногда может быть невозможно, т.к. в процессе сходимости этого математического метода, значения технологических параметров могут выйти за пределы функционирования элементов ХТС. При расчете ХТС, имеющей несколько разрываемых потоков (наличие нескольких рециклов), применение итерационного метода вообще может быть достаточно проблематично, т.к. вследствие наличия технологических связей, итерационные процессы будут взаимосвязаны, что негативно повлияет на достижение решения для всей системы.
При расчете сложных ХТС, имеющих несколько разрываемых потоков, обычно применяются методы многомерной минимизации суммарной погрешности, описанные в специальной литературе (например /9/). Суть этих методов заключается в том, что в отличие от итерационного метода, искомые значения параметров потоков рассчитываются при проведении расчета, с помощью специальных математических методов с ограничениями, наличие которых не позволяет выйти за пределы функционирования технологических операторов (в процессе нахождения решения), что позволяет достичь сходимости намного быстрее и надежнее.
Сравнительные характеристики интегрального и декомпозиционного методов расчета ХТС.
Представление хтс в виде графов, матриц и таблиц.
Структуру ХТС обычно рассматривают в терминах теории графов, т.е. в виде ориентированного графа, вершины которого соответствуют аппаратам, а дуги – потокам (например, так как на Рис. N ). На рисунке номера вершин обозначены большим курсивом (справа сверху от вершины), а номера потоков – малым прямым шрифтом (под линией соответствующего потока).
Последовательность сцепленных дуг, позволяющая пройти от одной вершины к другой, называется путем. Путь можно обозначить как через последовательность дуг, так и через последовательность вершин. Путь, начальная вершина которого совпадает с конечной, причем каждая вершина, за исключением начальной, проходится только один раз, называется контуром. Например, на Рис.N имеются три контура (по вершинам): 2-3-4-2, 3-4-3 и 6-7-6.
Комплексом, называется часть графа, вершины которого обладают следующими свойствами:
- каждая из вершин и дуг комплекса входит в один из контуров графа;
- если вершина i входит в комплекс, то в этот комплекс входят также все вершины, входящие в контуры, которые содержат вершину i.
Например, на графе, представленном на Рис.N имеются два комплекса (по вершинам): 2-3-4 и 6-7. В первый комплекс входят два контура (2-3-4-2 и 3-4-3), а во второй – один (6-7-6).
Представленная на рисунке схема движения материальных потоков (граф) является достаточно простой, и, поэтому позволяет проводить свой анализ без применения каких либо программных продуктов. В случае более сложной схемы, проводить анализ становится затруднительно, т.к. при поиске оптимального множества разрываемых потоков комплексов необходимо проводить анализ достаточно большого количества информации и быстродействия. При использовании для анализа структуры ХТС специальных алгоритмов возникает проблема ввода в компьютер структурной схемы, т.е. ее формализация в каком либо числовом виде. В зависимости от выбранного способа анализа, структуру ХТС обычно формализуют в виде матрицы смежности или в виде списка смежности.
Матрица смежности представляет собой двоичную таблицу, количество строк и столбцов которой равны количеству вершин графа. Для учета входных и выходных потоков матрицу смежности добавляют нулевой строкой и столбцом, учитывая как нулевую вершину – окружающую среду. В случае если между двумя вершинами есть связь, то элементу матрицы смежности, находящемся на пересечении столбца и строки с соответствующими номерами вершин, присваивается значение "1", а в случае отсутствия связи – "0". Например, для графа, представленного на рисунке N можно составить следующую матрицу смежности:
Список смежности для графа, представленного на Рис.N можно представить в виде:
Список смежности
В данном списке, первая строка матрицы обозначает номер связи графа. Во второй строке указывается номер вершины, откуда указанная связь выходит, а в третьей – в какую вершину графа связь входит.
Кроме списка смежности, связи графа можно представить в таблицах связей. Например, для графа, представленного на Рис.N таблицы связей будут выглядеть следующим образом:
Синтез ХТС
Цель и задачи синтеза (создание) хтс
Целью синтеза (или создания) ХТС есть разработка и проектирование эффективной системы, которая бы дала возможность вырабатывать необходимый объем химической продукции высокого качества и обеспечивать экономичность и экологичность этого производства. Целью синтеза ХТС может быть также модернизация или реконструкция действующих производств.
Синтез ХТС предусматривает решение таких задач:
а) выбор основных технологических операций;
б) выбор структуры технологических связей между элементами ХТС;
в) определение параметров технологического режима работы отдельных элементов и системы в целом, которые должны обеспечить оптимальное функционирование создаваемой ХТС.
Методы и этапы разработки ХТС
Первым этапом разработки новой ХТС изобретательский. Он заключается в том, что автор или группа авторов делают изобретение, экспериментально доказывают его преимущества перед существующими и патентуют его.
Изобретение может быть случайному, сделанным на основании литературных данных или вследствие продолжительных и систематических экспериментальных исследований (при этом бывает, что изобретение не отвечает главной цели исследований и является побочным). На этом этапе спорят теоретические основы будущей ХТС. На базе известных технологий определяют необходимые стадии технологических процессов, ориентировочно выбирают их технологические параметры.
На втором этапе синтеза разрабатываются основные стадии ХТС, их теоретические основы и осуществляется оптимизация этих стадий. На этом этапе делают поиск оптимальных параметров каждой стадии, используя известные из литературы данные о статике и кинетике процессов, физико-химических свойствах веществ, которые применяются в этой ХТС. Если же в литературе эти данные отсутствуют, то получают их экспериментально. Например, изучают растворимости солей или газов в системах, которые исследуются, равновесие пар-жидкость, физико-химические свойства систем (плотность, вязкость, летучесть) и т.п