Файл: Основы термодинамики. Принцип возрастания энтропии.docx

ВУЗ: Не указан

Категория: Реферат

Дисциплина: Не указана

Добавлен: 12.12.2023

Просмотров: 41

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.


Стихотворение Ф. Тютчева:

Не то, что мните вы, природа,

Не слепок, не бездушный лик.

В ней есть душа, в ней есть свобода,

В ней есть любовь, в ней есть язык.

Богатое информационное сообщение. В нем заложено глубокое содержание: о единстве природы и человека, о необходимости чуткого и бережного отношения человека к внешнему миру. Если представить себе, что все буквы, из которых состоит сообщение, рассыпать в беспорядке, то весь смысл текста будет утраченным, и эти же все буквы уже не несут никакой информации. Где больше энтропия? В последнем случае, где больше хаос. Из этого следует вывод о том, что информация представляет собой одну из форм энергии, энтропия которой очень низка, поэтому ее еще называют отрицательной энтропией. [5]

Итак, энтропия – мера беспорядка, хаотичности системы. С ростом энтропии возрастает, усиливается беспорядок в системе. И тогда, согласно второму закону термодинамики, энтропия замкнутой системы, то есть системы, которая не обменивается с окружающей средой ни энергией, ни веществом, постоянно возрастает. Такие системы эволюционируют в сторону увеличения беспорядка, дезорганизации и хаоса, пока не наступит состояние равновесия – точка термодинамического равновесия, при которой энтропия максимальна, а производство работы уже невозможно. Из этого следовало, что наиболее организованные, например, живые организмы, должны быть высоко неупорядоченными. Применяя второй закон термодинамики к такой системе, как Вселенная, Р. Клаузиус пришел к трагическому заключению о том, что энтропия Вселенной должна когда-нибудь достигнуть своего максимума. Это означает, что t0 всех тел во Вселенной станет одинаковой и все процессы во Вселенной прекратятся, что приведет ее к тепловой смерти. Однако же история эволюции Вселенной свидетельствует о постоянном развитии от низших форм организации к высшим. Теория эволюции Дарвина утверждает, что естественный отбор направлен на выживание более совершенных организмов и усложнение их организации. Впервые проблема этого противоречия в рамках сравнения свойств живых и неживых систем была сформулирована в книге Эрвина Шредингера «Что такое жизнь?». Он подчеркивал то, что законы физики лежат в основе образования биологических структур, показал, что живые системы, вопреки второму закону термодинамики, способны поддерживать упорядоченность, то есть живые системы могут проявлять тенденцию как к разрушению упорядоченности, так и к ее сохранению. За неживой же природой тогда было признано лишь право разрушать любую упорядоченность.


Эти противоречия оставались неразрешимыми вплоть до шестидесятых годов прошлого столетия, пока не появилась новая наука неравновесная термодинамика, которая опирается на концепцию необратимых процессов и оперирует новым фундаментальным понятием – открытые системы. Неравновесная термодинамика показала, что тенденция к созданию присуща и неживой природе. Вся материя способна осуществлять работу против термодинамического равновесия, способна самоорганизовываться и самоусложняться.

Очень важно то, что с введением понятия энтропии, термодинамика впервые ввела в физику понятие времени в форме необратимого процесса возрастания энтропии в системе, по которому можно судить об изменении системы: чем выше энтропия системы, тем больше временной промежуток прожила система в своей эволюции. В отличие от механических процессов, в которых время выступает как параметр, знак которого можно менять на обратный, а, следовательно, вернуть систему к первоначальному состоянию, в необратимых термодинамических процессах время необратимо. Энтропия практически выступает в классической термодинамике в качестве своеобразной стрелы времени.[5]

Раздел 4. Третье начало термодинамики

Как уже указывалось, первый и второй законы термодинамики были сформулированы как принципы невозможности двигателей первого и второго рода.

Третий закон термодинамики сформулирован как принцип невозможности достижения абсолютного нуля температур. [7]

Рассматривая максимально возможные теплоту и работу химических реакций вблизи абсолютного нуля температуры, немецкий физик и физикохимик В. Нернст (1864–1941) заметил, что для конденсированных систем при T → 0 производные теплоты и работы по температуре становятся равными друг другу и также стремятся к нулю. Базируясь на этом, он своей теоремой (теорема Нернста) установил, что вблизи абсолютного нуля температуры значение всех теплоемкостей становится равным нулю и энтропии S всех веществ, находящихся в равновесном состоянии, становятся неизменными и равными между собой. Этот вывод, называемый тепловым законом Нернста, в дальнейшем подтвержден практикой расчетов и экспериментальными данными определения теплоемкостей. В дальнейшем М. Планк показал, что абсолютные значения энтропии при T → 0 для различных веществ не только равны друг другу, но и могут быть приняты равными нулю, т. е. для всех веществ при 

T → 0 имеем S 0 =0. [7]

Из вышеуказанного рассуждения следует, что ни путем отвода тепла (т. е. охлаждением тела), ни путем совершения какой-либо работы вблизи абсолютного нуля понизить температуру тела невозможно. Этот вывод формулируется как весьма важный закон: абсолютный нуль температуры недостижим. Опыт показывает, что, говоря словами самого Нернста, «в соответствии с результатами квантовой теории для каждого твердого тела существует в окрестности абсолютного нуля некий температурный интервал, в котором само понятие температуры практически теряет смысл», или, проще говоря, в этом температурном интервале свойства тела (объём, тепловое расширение, сжимаемость и т. д.) не зависят от температуры. Это поле термической нечувствительности различно у разных тел; у алмаза, согласно Нернсту, оно простирается не менее чем на 40 градусов от абсолютного нуля.

Раздел 5. Первые тепловые двигатели

Создание и развитие термодинамики было вызвано, прежде всего, необходимостью описания работы и расчета тепловых машин. Первыми тепловыми машинами были паровые двигатели, замкнутый термодинамический цикл которых впервые был описан в 1690 году Дени Папином(1647-1712). Первые тепловые двигатели предназначались для подъема воды из шахт и были изобретены английскими инженерами в 1698 году Томасом Севери(1650 - 1715) и в 1712 годуТомасом Ньюкоменом(1663 - 1715). Если в насосе Севери использовался пар в качестве тела, непосредственно толкающего воду, то машина Ньюкомена была первой поршневой паровой машиной. Отметим, что идея использования поршня принадлежит Папину.

     Широкое применение паровых машин в промышленности началось после изобретения в 1774 году Джеймсом Уаттом(1736 - 1819) паровой машины, в которой работа совершалась без использования атмосферного давления, что значительно сократило расход топлива. Уатт дополнил свои машины важнейшими механическими изобретениями, такими как преобразователь поступательного движения во вращательное, центробежный регулятор, маховое колесо и т.д. В 1784 году Уатт запатентовал универсальную паровую машину двойного действия, в которой пар совершал работу по обе стороны поршня. [6]

     Сейчас разработано большое количество разнообразных тепловых машин, в которых реализованы различные термодинамические циклы. Тепловыми машинами являются двигатели внутреннего сгорания, реактивные двигатели, различные тепловые турбины и т.д.


     Тепловые машины или тепловые двигатели предназначены для получения полезной работы за счет теплоты, выделяемой вследствие химических реакций (сгорание топлива), ядерных превращений или по другим причинам (например, вследствие нагрева солнечными лучами). Для функционирования тепловой машины обязательно необходимы следующие составляющие: нагревательхолодильник и рабочее тело. При этом, если необходимость в наличии нагревателя и рабочего тела обычно не вызывает сомнений, то холодильник как составная часть тепловой машины в её конструкции зачастую отсутствует. В качестве холодильника выступает окружающая среда. [6]

Заключение

В связи с тем, что непрерывное получение работы из теплоты возможно только при условии передачи части отбираемой от горячего источника теплоты холодному источнику, следует подчеркнуть важную особенность тепловых процессов: механическую работу, электрическую работу, работу магнитных сил можно без остатка превратить в теплоту. Что же касается теплоты, то только часть ее может, превращена в периодически повторяющемся процессе в механическую