Файл: Устройство и ремонт электромагнитных контакторов.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.01.2024

Просмотров: 172

Скачиваний: 4

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.




УСТРОЙСТВО И РЕМОНТ

ЭЛЕКТРОМАГНИТНЫХ КОНТАКТОРОВ

ТИПА МК-310Б И МК-15-01

(Работа содержит 33 страницы, рисунков – 3, список литературы)

СОДЕРЖАНИЕ

ВВЕДЕНИЕ

ИСТОРИЯ ОТЕЧЕСТВЕННОГО ЭЛЕКТРОВОЗОСТРОЕНИЯ

ЦЕЛЬ РАБОТЫ

1 КРАТКИЕ СВЕДЕНИЯ ОБ ЭЛЕТРОМАГНИТНЫХ КОНТАКТОРАХ

1.1 НАЗНАЧЕНИЕ

1.2 КОНТАКТОР МК-310Б

ТЕХНИЧЕСКИЕ ДАННЫЕ КОНТАКТОРА МК-310Б

    1. КОНТАКТОР МК-15-01

ТЕХНИЧЕСКИЕ ДАННЫЕ КОНТАКТОРА МК-15-01

2 ТЕХНОЛОГИЯ РЕМОНТА ЭЛЕКТРОМАГНИТНЫХ КОНТАКТОРОВ

2.1 СИСТЕМА ТЕХНИЧЕСКОГО ОБСЛУЖИВАНИЯ И РЕМОНТА

ЭЛЕКТРОВОЗОВ

2.2 РАЗБОРКА КОНТАКТОРА

2.3 РЕМОНТ ЭЛЕКТРОМАГНИТНЫХ КОНТАКТОРОВ

2.4 СБОРКА ЭЛЕКТРОМАГНИТНЫХ КОНТАКТОРОВ

2.5 ИСПЫТАНИЯ, ПРОПИТКА, РЕГУЛИРОВКА

2.6 ОБОРУДОВАНИЕ, ИНСТРУМЕНТЫ, МАТЕРИАЛЫ

3 ТЕХНИКА БЕЗОПАСНОСТИ

ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ ВЫПОЛНЕНИИ

СЛЕСАРНЫХ РАБОТ

ТРЕБОВАНИЯ ТЕХНИКИ БЕЗОПАСНОСТИ ПРИ РЕМОНТЕ

ЭЛЕКТРОАППАРАТУРЫ

БЕЗОПАСНОСТЬ ПРИ НАХОДЖЕНИИ НА ЖЕЛЕЗНОДОРОЖНЫХ

ПУТЯХ

ЗАКЛЮЧЕНИЕ

ЛИТЕРАТУРА

ВВЕДЕНИЕ.

ИСТОРИЯ ОТЕЧЕСТВЕННОГО ЭЛЕКТРОВОЗОСТРОЕНИЯ
ЭЛЕКТРОВОЗ - локомотив, приводимый в движение находящимися на нем тяговыми электродвигателями, которые получают элек­троэнергию от стационарного источника - энергосистемы через тяговые подстанции и тяговую сеть от контактного провода либо от собственных тяговых аккумуляторных бата­рей. Выпускаются также комбинированные контактно-аккумуляторные электровозы, ко­торые могут работать как от контактной сети, так и от аккумуляторной батареи. Подавля­ющее большинство находящихся в эксплуа­тации электровозов магистральных ж. д. яв­ляются неавтономными, т. е. не могут работать без контактной сети. На путях промышленных предприятий часто используются автономные электровозы, не зависящие от контактной се­ти. Для обеспечения маневровых работ наи­более подходящими являются контактно-аккумуляторные электровозы
, которые исполь­зуются также широко для обслуживания гор­ных выработок, где прокладка контактного провода затруднена или невозможна. Таким образом, эксплуатируемые электровозы могут быть классифицированы по назначению, сте­пени автономности, роду тока в тяговой сети; в зависимости от области использования и конструкции имеют ряд различных направ­лений.
Первые электро­возы появились на ж.-д. транспорте в конце 19 в. как локомотивы, альтернативные паро­возам. Развитие электротехники позволило со­здать мощные электродвигатели постоянного тока и двигатели переменного трехфазного то­ка. Были решены также проблемы генериро­вания электроэнергии и ее передачи по кон­тактной сети. Идея реализации электрическо­го локомотива с автономным или неавтоном­ным питанием была высказана в первой по­ловине 19 в., но первые практические резуль­таты были получены в 1880 г. В России ин­женер Ф. А. Пироцкий установил электриче­ ский двигатель на пассажирском вагоне и про­вел первые опыты; в 1880 г. в Санкт-Петер­бурге был проложен для электровагона рель­совый путь. В том же году Э. В. Сименс в Германии и Т. А. Эдисон в США предложили свои конструкции. Новые локомотивы смогли заменить паровую тягу в специфических ус­ловиях эксплуатации ж. д.- в длинных тон­нелях и на горных (перевальных) участках с большими уклонами. При этом проявились главные преимущества электровоза — отсут­ствие выбросов отработанных газов, возмож­ность увеличения силы тяги путем форсировки тяговых электродвигателей на руководя­щем уклоне, реализация идеи рекуперативного торможения с возвратом энергии в тя­говую сеть. Впоследствии область рациональ­ного применения электровозов существенно расширилась: их стали использовать и на рав­нинных участках с интенсивным движением поездов, где решающее значение имел высо­кий кпд самого электровоза (до 88-91%) и всей системы электрической тяги (до 30% при питании преимущественно от тепловых элек­тростанций и до 50-60% при питании от гидро­электростанций ).

Первые электровозы на российских ж. д. появились в 1929-1930 гг. в связи с элект­рификацией Сурамского перевала на Закав­казской железной дороге (линия Баку-Ба­туми). На линии эксплуатировались закуп­ленные в Италии, США, и Германии 6-осные электровозы постоянного тока 3 кВ, получив­шие обозначение С (с индексом, соответству­ющим стране-изготовителю). В России было налажено производство электровозов на Ко­ломенском заводе совместно с московским за­водом «Динамо», который начал выпускать тяговые электродвигатели и электрооборудо­вание. В 1932 г. был выпущен первый оте­чественный грузовой электровоз сети Сс, впо­следствии - ВЛ19 (цифра 19 указывает осе­вую нагрузку в т на рельсы). Этот принцип сохранялся в обозначениях электровозов ВЛ22 и ВЛ23, позже перешли к указанию числа осей (постоянного тока ВЛ8), а затем добави­ли букву «О», которая обозначала род тока (электровозы, работающие на однофазном то­ке), соответственно 6-осные и 8-осные локо­мотивы ВЛ60,

ВЛ80 (позднее буква трансформировалась в ноль).

Электровозы, имеющие обозначение ВЛ, были предназначены для грузового движения, хотя довольно часто используются и для тяги пассажирских поездов. Конструктивная ско­рость электровозов ВЛ обычно не превышает 110 км/ч. В 70-е гг. был реализован переход на более мощные 12-осные электровозы на базе двух 6-осных секций, в каждой из ко­торых кузов опирался на три 2-осные тележки (постоянного тока ВЛ15 и переменного тока ВЛ85, ВЛ86). Однако одновременно получи­ла распространение и концепция более гибкого типажного решения, когда выпускались 4-осные секции, из которых можно было фор­мировать тяговые единицы из 2-4 секций (по­стоянного тока ВЛ11М, переменного тока ВЛ80С). По мере расширения электрифика­ции ж. д. наряду с грузовыми электровозами начался выпуск скоростных электровозов, параметры которых были приспособлены для тяги пассажирских поездов. Первый пасса­жирский электровоз, получивший наименование ПБ (Политбюро), был выпущен Коло­менским заводом в 1934 г. Электровоз имел 6 осей, групповой привод колесных пар. Не­большие партии грузовых электровозов ВЛ19, ВЛ22, ВЛ60 выпускались с изменен­ным передаточным отношением от тяговых двигателей на колесные пары, что позволяло использовать их в пассажирских сообщениях (с дополнительной буквой П, например ВЛ60П).

В начале 90-х гг. произошло значительное снижение перевозочной работы, вследствие чего потребность в сверхмощных электровозах сократилась, имевшийся парк электровозов стал вполне достаточным для выполнения пе­ревозок; выпуск новых электровозов сокра­тился. Электровоз ВЛ85, имевший наиболее отработанную конструкцию, начали выпу­скать в односекционном исполнении (ВЛ65). Для возможности использования электровоза в пассажирском сообщении было применено опорно-рамное подвешивание тяговых двига­телей, в результате чего конструктивная ско­рость повысилась до 140 км/ч. Было преду­смотрено электрическое отопление пассажир­ского поезда от электровоза. Такой электровоз фактически относится к классу универсаль­ных - грузопассажирских.

Основу эксплуатируемого парка пассажир­ских локомотивов составляют 6-осные элек­тровозы ЧС2 и ЧС2Т постоянного тока, элек­тровозы ЧС4 и ЧС4Т переменного тока, а также 8-осные электровозы ЧС6, ЧС7 и ЧС200 постоянного тока и с такой же ходовой частью электровозы ЧС8 переменного тока. С середины 90-х гг. на магистраль­ных ж. д. эксплуатируются скоростные пас­сажирские электровозы (1994 г.), 8-осные односекционные электровозы ЭП200, конструк­тивную скорость которых предполагалось довести до 250 км/ч, и упрощенная модифи­кация такого электровоза на конструктивную скорость 160 км/ч. В 2001 г. в связи с раз­витием скоростного движения выпуск элект­ровозов на максимальные скорости 200-250 км/ч увеличился. Основные пассажиро­потоки в высокоскоростном пассажирском со­общении реализованы моторвагонными элект­ропоездами. В сер. 90-х гг. были изменены обозначения новых электровозов: в обозна­чение грузовых электровозов ввели букву Э (например, Э1, Э2, ЭЗ и т.д.), а для пас­сажирских и универсальных - буквы ЭП, в частности электровоз ВЛ65 получил обо­значение ЭП1, электровоз, выполненный на базе его механической части, с возможностью питания от сети как постоянного, так и пе­ременного тока, ЭП10.

ЦЕЛЬ РАБОТЫ
Заданием на письменную экзаменационную работу мне было предложено детально изучить назначение, конструкцию электромагнитных контакторов. А также, с учетом практических навыков, приобретенных во время прохождения производственной практики, описать технологический процесс их ремонта в объеме ТР-3, применяемый инструмент и оборудование, обращая особое внимание на соблюдения правил техники безопасности при работе в цехах депо.

1 КРАТКИЕ СВЕДЕНИЯ ОБ ЭЛЕКТРОМАГНИТНЫХ КОНТАКТОРАХ

1.1 НАЗНАЧЕНИЕ
Электромагнитные контакторы на электрово­зах применяют для включения и отключения вспомогательных ма­шин и электрических печей, а также для автоматического отключе­ния пусковых резисторов в цепях вспомогательных машин после их разгона. Для включения они не требуют сжатого воздуха, что важно для пуска мотор-компрессоров. Электромагнитные контак­торы срабатывают под действием электромагнитных сил, которые по значению значительно меньше сил, возникающих при электро­пневматическом приводе. Поэтому такие контакторы используют только при небольших токах.

На отечественных электровозах в цепях вспомогательных ма­шин применяют электромагнитные контакторы МК-310Б, а в цепях электрических печей — контакторы МК-15-01.
1.2 КОНТАКТОР МК-310Б
Этот контактор состоит из привода, кон­тактной и дугогасительной систем.

Под действием отключающей пружины 8 (рис. 1) якорь 9 с изоляционным рычагом 7 и механизмом подвижного контакта, состоящим из кронштейна 6, держателя контакта 3, притирающей пружины 5 и подвижного контакта 2, находятся в крайнем правом положении, как указано на схеме рис. 1, б. Подвижной и непод­вижный контакты 2 разомкнуты. Если подать напряжение цепи уп­равления 50 В на включающую катушку 11, то под действием тока в сердечнике катушки и ярме магнитопровода 10 наводится маг­нитный поток, который притягивает якорь 9. Якорь поворачивается и, сжимая пружину 8, вначале подводит подвижной контакт к не­подвижному, а затем, сжимая притирающую пружину 5 за счет поворота держателя контакта, притирает и прижимает контакты в замкнутом состоянии. Неподвижный контакт укреплен на крон­штейне 13, а тот в свою очередь на изоляционной планке 12. В вы­резе кронштейна 13 находится дугогасительная катушка 14 с сер­дечником 15. Для создания необходимого магнитного потока в зоне горения дуги при небольшом токе катушка 14 имеет большое число витков.



Рисунок 1 – Электромагнитный контактор МК-310Б

а) общий вид; б) схема работы
Ток силовой цепи при включенном контакторе проходит через дугогасительную катушку 14, кронштейн 13, контакты 2 и гибкий шунт 4, шунтирующий все подвижные шарнирные соединения, к проводу, идущему к вспомогательной машине. Выключение ка­тушки 11 вызывает отход якоря от магнитопровода под действием пружины 8 и размыкание контактов. Образующаяся между контак­тами дуга выдувается вверх в дугогасительную камеру 17 под дей­ствием магнитного поля катушки 14, а также восходящего потока воздуха, образующегося вследствие нагревания электрической ду­гой. Магнитный поток дугогасительной катушки подводится в зону гашения дуги через стальные полюсы 1, укрепленные на асбестоцементных стенках камеры. Эти полюсы плотно прилегают к сердеч­нику 1,5 катушки с обеих сторон.

Сама дугогасительная камера, кроме двух стенок с полюсами, имеет две асбестоцементные продольные перегородки, устанавли­ваемые внутри боковых планок.

В процессе гашения дуги она переходит с контактов на дугогасительные рога, растягивается, охлаждается о стенки и перегород­ки камеры и гаснет. Один из рогов — 16 — укреплен в камере, а другим служит кронштейн 13 неподвижного контакта. На ряде контакторов (МК-310Б-42) имеются блок-контакты, расположенные пра­вее выключающей пружины 8.
ТЕХНИЧЕСКИЕ ДАННЫЕ КОНТАКТОРА МК-310Б
Номинальное напряжение силовой цепи …………………………………. 3000 В

Номинальный ток продолжительного режима кон­тактора:

МК-310Б-37.......................................................................................................... 10 А

МК-310Б-42........................................................................................................... 25А

Номинальное напряжение цепи управления ………………………………… 50 В

Номинальный ток блокировочных контактов ………………………………… 5 А

Номинальный ток включающей катушки ………………………………..…0,65 А

Масса контактора:

МК-310Б-37....................................................................................................... 22,9 кг

МК-310Б-42........................................................................................................ 23,5кг

Разрыв силовых контактов ...................................................................... 30—34 мм

Провал силовых контактов.......................................................................... 7—9 мм