Добавлен: 10.01.2024
Просмотров: 170
Скачиваний: 5
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РФ РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ НЕФТИ И ГАЗА (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ИМЕНИ И.М. ГУБКИНА
ФАКУЛЬТЕТ ГУМАНИТАРНОГО ОБРАЗОВАНИЯ КАФЕДРА ИСТОРИИ
РЕФЕРАТ
на тему:
«Арктика»
Студентки группыМП-20-06
Казак Елизавета Андреевна
Научный руководитель:
Тараданова Татьяна Михайловна
Москва, 2021
Содержание
Введение
В последнее время наблюдается повышенный интерес к вопросам освоения Арктического шельфа - не только в России, но и в целом ряде других стран (даже тех, которые не имеют собственных выходов к северным морям).
Причиной, с одной стороны, является исчерпание ресурсов в традиционных районах мира (таких, как Северное море, суша Северной Америки, Западная Сибирь в России и так далее); с другой стороны, нарастающий ресурсный национализм (усиление роли и значения национальных компаний в нефтегазовом секторе ведущих нефтегазодобывающих стран Ближнего Востока, Азии, Латинской Америки) -- все это вызывает повышенный интерес к Арктике. Слабая изученность данного района, а также открытие там уникальных месторождений (например, Штокмановское с запасами 3,7 трлн. куб. метров) дают основания для оптимизма с точки зрения перспектив расширения ресурсной базы.
По данным Минприроды России потенциал Арктического шельфа в российском секторе составляет примерно 90 миллиардов тонн условного топлива.
Цель исследования - рассмотреть международные правовые и экономические проблемы освоения природных ресурсов Арктического шельфа.
Для достижения поставленной цели необходимо решить следующие задачи:
1. Раскрыть состояние и перспективы освоения Арктического шельфа.
2. Рассмотреть экономические и правовые проблемы освоения российского арктического шельфа.
Объектом исследования является региональная экономика.
Предметом - проблемы освоения природных ресурсов Арктического шельфа.
Методы исследования, использованные в работе: синтез и анализ, метод обобщения.
-
Методика исследований
Основным методом прогнозирования нефтегазоносности недр является историко-геологический, который связывает процессы нефтегазообразования с геологическими стадиями развития бассейна. Такой подход учитывает не только современное строение региона, но и предшествующую его историю за длительный период геологического времени, позволяет установить динамику и последовательность изменения геологических событий.
Большое значение для формирования нефтегазоносности имеют процессы рифтогенеза, т.е. растяжения земной коры, приводящие к образованию серии глубинных разломов и системы грабенов и горстов. Впоследствии на месте грабенов и горстов унаследовано развиваются прогибы и впадины, заполненные комплексами отложений с большими толщинами. Экстремальные толщины осадочного чехла унаследованных впадин достигают 15-20 км. Гранитный слой значительно утончен или в отдельных участках, возможно, совсем отсутствует, что приводит к формированию так называемых базальтовых окон.
Растяжение земной коры с резким увеличением скорости погружения является причиной формирования зон перенапряженного состояния на определенных уровнях, что приводит к генерации УВ в зоне катагенеза. При достижении предельного избыточного давления происходит переток флюидов в зоны пониженного давления. Глубинные разломы в осевых зонах рифтогенеза служат путями для перемещения вверх горячих флюидных потоков. Это способствует как вовлечению в процесс генерации новых нефтематеринских толщ, так и активной дифференциации и миграции УВ из нефтематеринской толщи в коллектор.
Каждая структурно-тектоническая зона обладает своим собственным флюидодинамическим режимом, и в ее пределах зарождаются самостоятельные УВ-системы, т.е. совокупность и генетическое единство процессов генерации, миграции и аккумуляции УВ в определенных интервалах разреза. Генетическая связь источника или источников УВ, их состав и местоположение приводят к проявлению фазовой зональности в распределении УВ по площади и разрезу.
-
Тектоническое строение российского сектора Арктики
Основная часть акватории и сопредельной территории суши Арктики расположена на дорифейской коре континентального типа. Глубина подошвы земной коры (граница Мохоровичича) изменяется от 40-42 км, уменьшаясь под зонами континентального рифтогенеза, до 33-35, иногда до 25 км. Граница Конрада фиксируется на глубине 20-25 км.
В геологической истории бассейнов Арктики на удаленных участках выделяется несколько этапов рифтогенеза, часто синхронных. Синхронность проявления рифтогенеза позволяет наметить региональные зоны, протягивающиеся на сотни и тысячи километров и, как следствие, обусловливающие сходство геологической истории и прогноз нефтегазоносности на первый взгляд разобщенных тектонических блоков (рис.1).
Рис. 1. Схема расположения основных тектонических элементов Арктики |
Принципиальное различие западного и восточного блоков российской Арктики заключается в их развитии на мезозойском этапе геологической истории. Западный, евразийский, блок, в большей степени развивавшийся синхронно с Восточно-Европейской платформой и ее арктическими окраинами, не претерпел повсеместной складчатости. При относительно небольших размерах растяжения формировались обширные рифтовые впадины (Центрально-Баренцевоморская и Южно-Карско-Ямальская зоны рифтогенеза, Печоро-Колвинский и Енисей-Хатангский рифты) с большими толщинами осадочного чехла – от 7 до 10-13 км и более. Их последующая инверсия не завершилась интенсивной складчатостью, а лишь послужила причиной формирования линейных валообразных поднятий, к которым относятся инверсионные валы центральной части Баренцева моря, Печорской синеклизы, Южно-Карской впадины и севера Западной Сибири, а также Енисей-Хатангского прогиба. Инверсией, приведшей к интенсивной складчатости, были затронуты лишь отдельные линейные зоны, такие как байкалиды в пределах Тимано-Печорского бассейна, каледониды Шпицбергена, герциниды Западной Сибири, киммериды Новой Земли, Земли Франца-Иосифа, Северной Земли и Таймыра (рис. 2).
Рис. 2. Композиционный сейсмогеологический разрез баренцево-карского шельфа 1– фундамент; 2 – базальтовые интрузии; положение профиля см. на рис. 1
Амеразийский блок, который первоначально представлял собой северо-восточное продолжение Сибирской платформы (по Е.Е.Милановскому), превратился в платформенно-складчатую область, где большая часть затронута позднекиммерийской складчатостью умеренного сжатия с рядом крупных остаточных срединных массивов.
Отдельные реликты рифтогенных прогибов палеозойского возраста можно проследить в пределах Чукотского моря, моря Лаптевых, Аляски, где верхнепалеозой-нижнемезозойские терригенно-карбонатные толщи формируют линейные валообразные поднятия. Часто инверсия приводила к образованию складчатости с широким развитием чешуйчатых надвигов (Врангелевско-Геральдская гряда, Верхоянский складчатый пояс). Новая эпоха позднемелового (палеоцен-эоценового) растяжения привела к сбросовым смещениям и формированию крупных прогибов (Северо-Чукотский и Восточно-Сибирский).
В результате территорию, а также акваторию всего амеразийского блока следует рассматривать как единую сложнопостроенную киммерийскую плиту со складчатым основанием разной интенсивности сжатия досеноманского возраста. Акваториальная часть этой плиты в литературе часто называется “Гиперборейской платформой”. Большая часть этого основания обнажена на юге и представлена складчатыми зонами, расположенными вокруг древних срединных массивов, которые также затронуты киммерийской складчатостью. Фрагменты допозднемелового плитного покрова сохранились лишь в отдельных участках, прогибание которых унаследовано от предыдущей эпохи (прогибы в пределах Врангелевско-Геральдской складчато-надвиговой зоны Чукотского моря, в западной части архипелага Новосибирских островов).
В силу деструкции нижнего палеозой-мезозойского комплекса осадочного чехла, районирование восточного сектора российской Арктики ведется по структуре верхнемелового – кайнозойского плитного чехла. В его пределах выделяются Северо-Чукотский и Южно-Чукотский прогибы, разделенные Врангелевско-Геральдской складчато-надвиговой зоной. В юго-восточной части Восточно-Сибирского моря расположен крупный одноименный прогиб.
Существенная роль в новейшем тектоническом плане принадлежит арктической рифтовой системе, которая, возможно, привела к образованию океанической коры в районе подводных хребтов Гаккеля и Книповича. Кайнозойская рифтовая система, вероятно, уже без разрыва сплошности коры имеет продолжение в пределах моря Лаптевых в виде системы горстов и грабенов, заполненных кайнозойскими осадками. Ее южные ветви прослеживаются на юг и юго-восток в пределах суши, являясь естественным продолжением более древних киммерийских структур Верхоянского складчатого пояса.
Говоря о синхронности рифтогенеза в пределах Арктики, можно выделить эпохи активизации процессов образования рифтов на огромных площадях. Зарождение крупных расколов земной коры, по-видимому, произошло еще в рифее. Рифейские прогибы известны в Тимано-Печорском бассейне, их реликты прослеживаются как в Баренцевом, так и Карском морях. Возможно, рифейское заложение имеет и архипелаг Новой Земли, на месте которого в раннем палеозое формировался крупный рифт, не претерпевший инверсию в палеозое. Следующая эпоха активного рифтогенеза приходится на девон, варьируя по времени от раннего – среднего девона в пределах Печорской синеклизы и, возможно, восточном секторе Баренцева моря до позднего девона – раннего карбона в норвежском секторе Баренцева моря. Девонский рифтогенез существовал и на территории Западной Сибири и имел продолжение в акваторию Карского моря и пределы Енисей-Хатангского прогиба. Реликты девонского рифтогенеза мы можем наблюдать и в восточном секторе российской Арктики, в пределах Врангелевско-Геральдской зоны поднятий, на Аляске.
Особое значение в формировании западного сектора Арктики имеет триасовый рифтогенез, который действовал от раннего триаса до рэт-лейса. Он привел к формированию обширных впадин на акватории Баренцева моря с толщинами осадочного чехла до 10 км. Триасовый рифтогенез четко прослежен в пределах Западной Сибири (Сурков В.С., 1984; 2006), где он “рассеян” в виде отдельных грабен-рифтов Уренгой-Колтогорской зоны, оперяющих основную восточную ось прогибания Западно-Сибирской зоны рифтогенеза. О повсеместном развитии триасового рифтогенеза свидетельствует наличие туфовых покровов и базальтовых лав в триасовых отложениях в пределах всех крупных прогибов евразийского блока и в отдельных структурах амеразийского блока земной коры (Верхоянская складчатая область, о-в Котельный).
Следующий этап рифтогенеза приходится на меловой – кайнозойский период. Этот этап наиболее характерен для амеразийского блока земной коры. Он обусловил развитие крупных прогибов – Северо-Чукотского и Восточно-Сибирского, а также начало формирования крупной впадины Северного Ледовитого океана. Сказался также этот этап и на формировании отдельных грабен-рифтов западного сектора российской Арктики, оперяющих основную ось растяжения и погружения земной коры в районе хребта Гаккеля.
Каждый из этапов рифтогенеза проявился не только в формировании крупных прогибов и впадин, благоприятных для генерации УВ, но и в образовании линейных инверсионных поднятий различной степени сжатия, часто представляющих крупные зоны нефтегазонакопления.
-
Освоение ресурсов Российского Арктического шельфа
Состояние и перспективы освоения Арктического шельфа.
В настоящее время с освоением Мирового океана связывают решение четырех основных проблем, имеющих первостепенное значение для дальнейшего развития общества: увеличение добычи минерального сырья, использование энергии океана, обеспечение продуктами питания и размещение населения. Шельф, как самая доступная часть Мирового океана, служит зоной активной деятельности человека по освоению минеральных, биологических и химических ресурсов за пределами суши.
Существуют следующие основные направления использования континентального шельфа:
1. освоение шельфа как источника нефти и газа;
2. освоение шельфа как источника твердых полезных ископаемых;
3. освоение шельфа как источника биологических ресурсов;
4. освоение шельфа как источника энергии;
5. использование шельфа для размещения на нем гражданских и промышленных объектов.