Файл: 1 Начало промышленного производства ряда полимеров и пластмасс.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 329

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Потери на трение в уплотнениях из кожаных или резиновых манжет:

Потери на трение в уплотнениях манжет на основе пластиката ПВХ:

Периоды формования

4.6.6.10 Технологические расчеты при литье под давлением

Тема Т7 Технология и оборудование каландрования Конструкции и классификация каландров 6.2 Конструкции и классификация каландров и вальцовКонструкция универсальных каландров позволяет выполнять большинство технологических операций, производимых в процессе каландрования. Кроме того, существуют специализированные листовальные, промазочные, обкладочные (дублировочные), гладильные и тиснительные каландры.Каландры классифицируются в зависимости от назначения, количества расположения валков (рис. 6.1), типа привода и характера давления валков на материал.В зависимости от типа привода каландры бывают с одним общим и с индивидуальными приводами на каждый валок. По характеру давления валков на материал каландры бывают: с регулируемым давлением валков и изменяемым при помощи нажимных устройств зазором между ними; с постоянным давлением валков и переменным автоматически меняющимся зазором, зависящим от толщины материала. Наибольшее распространение получил четырехвалковый каландр с Г-образным расположением валков (рис. 6.2). Для вращения каждого из валков применяют индивидуальный привод, состоящий из электродвигателя и редуктора. Конструкция привода обеспечивает независимое плавное регулируемое изменение скорости вращения валков. Отношение скоростей вращения соседних валков называется фрикцией. Ее величина определяется конкретной технологической операцией, выполняемой в межвалковом зазоре. Например, в случае промазки тканей для интенсификации процесса затекания полимера в пространство между валками величину фрикции устанавливают в пределах 1:1,3÷1:1,4. Кроме того, фрикция необходима для более равномерного прогрева и гомогенизации полимерного материала, поступающего в зазор между валками. Рабочим органом каландра, формирующим полотно пленки или листа, являются валки. К качеству поверхности валков предъ­являются высокие требования, как к поверхности, так и форме. Высокое давление (7÷70 МПа), развивающееся в зазоре между валками каландра, вызывает значительные распорные усилия, достигающие до 100 тс (1 МН). Под действием распорных усилий валки прогибаются. Следствием этого является неравномерная толщина полотна полимерного материала по ширине. Наиболее толстым полотно оказывается в середине, где прогиб валка достигает максимального значения.Для компенсации прогиба с целью получения равнотолщинного полотна применяют следующие методы: бомбировка валков, перекос валков и контризгиб валков (рис. 6.3). Бомбировка валков заключается в придании им бочкообразной формы. Увеличение диаметра средней части валка по сравнению с диаметром по краю обеспечивает только частичную компенсацию прогиба, поскольку прогиб зависит от величины распорного усилия. Оно определяется вязкостью перерабатываемого материала, режимом переработки, размерами зазора. На заводе-изготовителе оборудования валку придается усредненная форма на основе расчетов для широкого круга перерабатываемых материалов и режимов.Компенсацию прогиба валков непосредственно при наладке конкретного технологического режима переработки при помощи механизма перекоса валков, предусмотренного в конструкции каландра. Клинья механизма перекоса разводят концы крайних валков в горизонтальной плоскости. Прогиб компенсируется тем, что зазоры по краям валков становятся больше, чем в середине. Сочетание бомбировки и перекоса валков является в настоящее время основным способом компенсации прогиба.Реже в качестве дополнительного приема применяются контризгиб валков. В этом случае прогиб валков уменьшается за счет усилия от гидроцилиндров, прикладываемого к шейкам валка в направлении, противоположном направлению распорного усилия. Недостаток этого способа более тяжелые условия работы подшипников валков.Комбинация указанных методов компенсации прогиба валков позволяет довести отклонение толщины полотна материале по его ширине до 1÷2 мкм.Каландрование осуществляется при температурах, соответствующих нахождению полимерного материала в вязко-текучем состоянии. Обогрев валков может осуществляться двумя способами подвода теплоносителя под рабочую поверхность валков (рис. 6.4): с центральным каналом для подвода теплоносителя и с переферийными каналами. Равномерный обогрев валка поддерживается системой термостатирования. При температуре переработки до 200÷220 0С в качестве теплоносителя применяют перегретую воду, пар или пароводяную смесь. Для достижения более высоких температур используют высокотемпературные органические теплоносители (ВОТ) или масляный, или электрообогрев.Особенность каландрования – постепенное уменьшение зазоров между валками по ходу перемещения материала, что приводит к различным величинам запаса материала в начальном, промежуточных и калибрующих зазорах. Количество материала, находящегося в межвалковом зазоре, уменьшается по мере удаления от середины валка к краям; происходит уширение материала. Одновременно с этим сокращается и время пребывания перерабатываемого материала в межвалковом зазоре. Приготовление полимерных композиций для полимерных покрытий 6.4.1 Приготовление полимерных композиций для полимерных покрытийНаносимые на основу полимерные покрытия находятся в жидком или вязко-текучем состоянии. После нанесения покрытий из жидкого полимера образуется прочная пленка. Применение полимеров в жидком состоянии позволяет наносить тонкие покрытия на большую поверхность с минимальными энергозатратами, а также обеспечивает частичную пропитку и лучшее сцепление покрытия с материалом основы. В таблице 6.1. указаны принципы образования покрытия в зависимости от типа полимера и формы исходного сырья Исходя из состояния полимера перед нанесением покрытия, по масштабу производства покрытия из пластизолей занимают ведущее место. Это объясняется тем, что порошкообразные эмульсионные ПВХ, как вы знаете, хорошо диспергируется в пластификаторах. ПВХ-пластизоли (ПВХ+пластификатор) можно хранить при комнатной температуре в течение суток без опасения седиментации (осаждения частиц). Кроме того, они обладают хорошей текучестью, что важно при нанесении покрытий. Путем добавления растворителя уменьшают их вязкость. Такие пасты называются органозоли (ПВХ+пластификатор+растворитель).Для приготовления пластизолей исходные компоненты смеси необходимо дозировать в правильном соотношении и перемешивать. Основные операции приготовления пластизолей и применяемое оборудование указаны в таблице 6.2. Основные компоненты порошкообразный ПВХ и пластификатор должны обладать реологическими свойствами и жизнеспособностью, соответствующими предъявляемым требованиям. Суспензии склонны коагулировать. Для приготовления водных суспензий применяют ПВА, ПАК, ПВХ (см. таблицу 6.1), ПС, латексы НК и СК. Они содержат 40÷50 % полимера, поэтому низковязкие.Добавлением водорастворимых солей ПАК, водорастворимых полимеров – ПВС, казеиновый клей и др. увеличивают вязкость композиции.Из различных низкомолекулярных веществ (мономеров) и промежуточных продуктов производства полимеров (олигомеров) композициями для нанесения покрытий могут служить вещества, обладающие необходимой вязкостью. Требуемая вязкость достигается форполемиризацией или смешением компонентов с различной степенью полимеризации. Растворители при этом не применяются, т.к. их роль выполняют мономеры, содержащиеся в пленке. Технология приготовления смеси в этом случае такая же, как при получении растворов. Выбор полимера ограничен требованием быстрой сушки пленки. Применяют полиуретановую композицию горячего отверждения и олигомеры акрилата.При нанесении покрытий из термопластов (нанесение расплавов) они применяются в виде порошка, гранул, кусков, блоков. При этом порошки агломерируют со вспомогательными веществами. Процесс смешения исходных компонентов совмещают с пластикацией (плавлением). Термопластичные покрытия наносят преимущественно из пластифицированного ПВХ и ПЭ. Технология нанесения полимерных покрытий 6.4.2 Технология нанесения полимерных покрытийтехнология нанесения полимерных покрытий состоит из стадий нанесения покрытия и образования пленки. Основной процесс при нанесении покрытий это пленкообразование. Стадии процесса пленкообразования из ПВХ-пластизолей - желатинизации (желирования) показаны на рис. 6.14.Различают прямой способ нанесения покрытий – непосредственное нанесения покрытий на основу и косвенный способ – нанесение полимерной пасты на транспортерную ленту.Нанесение покрытий осуществляется с помощью раклей, валков, фильтрационным способом, на каландрах, под давлением, разбрызгиванием раствора полимера на основу. Наиболее распространенные первые два способа и на каландрах.Назначение раклей – равномерное распределение полимерной композиции (пасты) на поверхности основы. Ракля представляет собой клиновидный нож, длина рабочей части которого равна ширине полотна основы. Конструкции применяемых раклей показаны на рис. 6.15.На рис. 6.16 представлены три схемы нанесения покрытий с помощью раклей. Обычно ракля устанавливается стационарно вертикально или под углом к ленте материала основы. При нанесении покрытий масса полимерной пасты перед раклей совершает циркуляционное движение. При этом ее а – частицы ПВХ в пластификаторе находятся в виде суспензии или отдельных агломератов; б – диспергирование агломератов при нагреве до 60 0С; в – набухание частиц ПВХ; г – полная сквозная пропитка пластификатором при 100 0С; д – плавление ПВХ при 160 0С, за счет чего границы контакта набухших частиц размываются запас перед раклей поддерживается постоянным. Большое влияние на процесс нанесения покрытий оказывает скорость сдвига в зазоре между раклей и основой: чем меньше толщина покрытия, тем выше скорость сдвига.При помощи валков реализуется принцип мокрого способа нанесения покрытий и возможность нанесения покрытий разнообразны. Принцип мокрого способа заключается в том, что дозирование количество пасты полностью или частично, но регулярно наносится на материал основы. Для промазки применяется один или несколько валков.На рис. 6.17 показан один из вариантов нанесения покрытий валковым способом. Лента – основа проходит вместе с металлической транспортной лентой. Промазочный валок гуммирован.При нанесении полимерных покрытий на каландрах полимер находится в пластичном или эластичном состоянии, благодаря чему он не только обладает хорошей адгезией к материалу основы, но также образует механическую связь с покрываемым материалом (вследствие возможности заполнения пор). Поэтому возможно нанесение с помощью каландров односторонних и многослойных покрытий рис. 6.18. Нанесение двухсторонних или многослойных покрытий осуществляется многократным его пропусканием через каландр.Технические варианты нанесения покрытий каландровым методом показаны на рис. 6.11 при производстве основного линолеума и на рис. 6.18 -- 6.20. На рис. 6.18 показан валковый агрегат для нанесения покрытий из расплавов полимеров, а на рис. 6.19 – двухсторонне нанесение покрытий, когда покрывной полимерный материал применяется в виде пленки. На рис. 6.21 показан кашировальный агрегат при получении клеенки (вариант “д” схемы, рис. 6.9). На рис. 6.22 показана одна из применяемых схем агрегатов производства текстовинита. Технологический процесс производства текстовинита на основе пластизолей ПВХ состоит из нескольких операций. Хлопчатобумажная ткань (молескин, бязь, миткаль, палатка башмачная и др.), предварительно сшитая на швейной машине “зиг-заг” и подсушенная до остаточной влажности 5 %, проходит все операции на текстовинитовом агрегате непрерывного действия.Агрегат включает следующие устройства: натяжной барабан; накладочный стол с раклей, на котором на движущуюся ткань накладывается слой пластизоля заданной толщины; две термокамеры с плитами обогрева (нагрев теплоизлучением), в которой происходит последовательно оплавление и сплавление ПВХ-пасты в пленку; два уплотнительных вала с электрообогревом, служащие для уплотнения и калибрования покрытия; тиснительно-закаточный станок для завершающих операций – нанесение рисунка тиснения (мереи) на пленку, охлаждение текстовинита (закрепление рисунка) и закатку в рулон. Пористые текстовиниты и искусственная замша перед намоткой в рулон направляются на промывку и сушку. При изготовлении искусственной замши на поверхность размягченного ПВХ-слоя насыпают слой Na2SO4. Осевшие в покрытии мелкие кристаллы соли после промывки горячей водой вымываются, образуя замшевидную пористую поверхность. Промывка пористого текстовинита (для обуви), полученного путем нанесения пасты, содержащей глицерин или CaCl2, а также имеющего на поверхности Na2SO4, производится в ванной.Тема Т8 Формование изделий из полимерных композиционных материалов Армирующие наполнители волокнистой структуры для полимерных композитов 7.2 Армирующие наполнители волокнистой структуры для полимерных композитов7.2.1 Армирующие волокнаПочему, именно при создании композиционных материалов было обращено внимание на материалы волокнистого строения, как в качестве наполнителя?Прежде всего тем, что практическая прочность очень тонких нитевидных материалов из различных веществ значительно выше прочности массивных. Высокая прочность волокон органического происхождения, а также неорганических волокон (например, асбест) объясняется:Высокой степенью ориентации цепочечных межмолекулярных образований и упорядоченностью их структуры. Такая структура являются следствием процессов или вытяжки, или ориентации при получении.Нитевидные материалы имеют меньший объем и поверхность по сравнению с объемными изделиями. Следовательно, содержат меньшее количество дефектов, микротрещин и других неоднородностей в своей структуре.Согласно статистической природы прочности материалов прочность определяется количеством структурных дефектов, особенно поверхностных. Так, прочность органических волокон в десятки раз выше прочности массивных образцов, а прочность очень тонких стеклянных и кварцевых волокон на 2÷3 порядка выше массивных материалов (таблица 7.4).Стеклянные волокна являются армирующим наполнителем наиболее распространенного композиционного материала конструкционного назначения – стеклопластиков. Наша отечественная промышленность производит стеклянные наполнители в виде элементарного непрерывного или штапельного волокна Ø2÷40 мкм и более, стеклонитей, стекложгутов различной толщины, стеклотканей разнообразного плетения – плоских и объемных, стекломатов и стеклохолстов различной толщины и плотности. Это дает возможность изготовлять детали и узлы конструкций из стеклопластиков с оптимальными технологическими и эксплуатационными свойствами.Непрерывное стеклянное волокно изготовляют из расплавленной стекломассы путем быстрого вытягивания струи на выходе из фильеры. Короткие волокна получают либо разрезкой непрерывных волокон (рубленное волокно), либо распылением расплавленной стекломассы на выходе из фильеры струей пара, воздуха или горячих газов (штапельное волокно). Непрерывное стеклянные волокна обладают значительно большей прочностью, чем штапельное, и чаще применяются в производстве изделий, предназначенных для высоконагруженных конструкций.Свойства стеклянных волокон во многом определяются их составом. В зависимости от основного назначения стеклянные волокна получают следующих составов: алюмоборсиликатные, алюмосиликатные, магнийалюмосиликатные (высокопрочные), алюмоциркониевые, свинцовые (для радиационной защиты), кремнеземные, кварцевые. Вышеперечисленные волокна почти полностью утрачивают прочность при 700 0С. Для стеклопластиков, эксплуатируемых выше 400÷500 0С, получают из SiO2 и бинарных систем, в которых помимо оксида кремния SiO2 содержатся оксиды HfO2, GeO2, TiO2 или Al2O3.Для более широкого варьирования свойств стеклопластиков выпускаются непрерывные стеклянные волокна не только по форме круглого цилиндра, но и других геометрических форм. Непрерывные стеклянные волокна, имеющие любую форму. кроме цилиндрической, принято называть профильными волокнами.Выпускаются профильные волокна, как показано на рис. 7.1, следующих форм: сплошные и полые.Применение профильных стеклянных волокон в качестве наполнителя дает возможность в случае полых волокон снизить плотность стеклопластиков, увеличить их удельную жесткость при изгибе и прочность при сжатии, улучшить диэлектрические и теплоизоляционные свойства. В случае волокон гексагональной, эллиптической, прямоугольной или гофрированной формой сечения – повысить плотность упаковки волокон в композиции, увеличить прочность и жесткость пластика, особенно в поперечном направлении. В случае стеклянной микроленты – снизить газопроницаемость пластика.Углеродные волокна (карбоволокна) являются основным армирующим наполнителем в полимерных композиционных материалах как углепластики (карбопластики). Углеродные волокна получают высокотемпературным пиролизом в инертной среде. Производство углеродных волокон сложный многостадийный процесс и состоит из четырех этапов: -получение полимерного волокна;-стабилизация на воздухе при 200÷300 0С (глубокая термическая деструкция и циклизация);-карбонизация при температурах до 1500 0С в атмосфере азота с малыми примесями кислорода (до 0,00025 %) для повышения прочности волокна;-высокотемпературная обработка (графитизация) при температурах до 3000 0С в атмосфере азота или аргона, идет кристаллизация графитоподобных образований.Свойства углепластиков зависят от свойств углеродных волокон, которые в свою очередь определяются условиями пиролиза органических волокон. Существует следующая классификация углеродных волокон по физико-механическим свойствам:низкомодульные – (Ер ≤ 10·104 МПа);среднемодульные – (Ер



По последней классификации полимерные материалы делят на две большие группы: общетехнического назначения и инженерно-технического назначения.

Конструкционные полимерные материалы общетехнического и инженерно-технического при повышенных температурах и, следовательно, по возможности применения назначения существенно различаются по поведению при воздействии механической нагрузки.

Полимерные материалы общетехнического назначения характеризуются резким снижением механических характеристик с повышением температуры, т.к. имеют низкую теплостойкость. Они неработоспособны при кратковременной нагрузке при температуре свыше 50 0С и главным образом работают в нагруженном состоянии или слабонагруженном состоянии при обычных или средних (до 50 0С) температурах.

Полимерные материалы инженерно-технического назначения имеют более высокие механические характеристики и теплостойкость. У них наблюдается меньшее снижение этих параметров с повышением температуры. Полимерные материалы данного класса могут работать при кратковременной нагрузке при высоких температурах (>250 0С). Могут длительно эксплуатироваться под нагрузкой при повышенных температурах.

Тема Т3 Технология и оборудование подготовительного производства

  1. Основное назначение подготовительного производства

В подготовительном производстве преимущественно осуществляют такие процессы, которые облегчают и улучшают переработку полимеров и полимерных материалов. Основное назначение подготовительного производства:

  • улучшение перерабатываемости полимерных материалов;

  • модификация свойств полимеров в соответствии с требованиями к конечным продуктам:

  • обеспечение экономически выгодных процессов производства изделий с хорошими эксплуатационными характеристиками.

При этом рассматривается главным образом тепло- и массообмен, которые реализуются при смешении и диспергировании под воздействием тепловой и механической энергии.

Наряду с подготовкой исходных компонентов таких, как стабилизаторы, пластификаторы, наполнители, красители и др., часто требуется удалить низкомолекулярные вещества, например, влагу, остаточные мономеры, растворители, и придать наполненному полимеру хорошую перерабатываемость, т.е. улучшить технологические свойства.


К процессам подготовительного производства в технологии переработки полимерных материалов относят следующие:

Модификация материала:

  1. Совмещение, а именно:

  • смешение сыпучих материалов с сыпучими;

  • смешение сыпучих материалов с жидкостями;

  • смешение жидкостей с жидкостями;

  • смешение жидкостей с газами;

  • пропитка твердых веществ растворами;

  • растворение;

  • суспендирование;

  • вспенивание.

  • Разделение, а именно:

      • сортировка твердых веществ;

      • удаление жидкостей из твердых частиц (сушка);

      • удаление газов и летучих веществ из твердых частиц.

    Формование материала:

    1. Агломерация: грануляция, таблетирование, уплотнение.

    2. Измельчение: дробление, диспергирование.



    1. Конструкция и принцип действия дробилок

    2.2.1 Дробилки

    По конструкции и принципу действия дробилки разделяются на
    1.   1   2   3   4   5   6   7   8


    Щековые дробилки с простым и сложным качением подвижной щеки (рис. 2.1).


    В этих дробилках материал раздавливается и раскалывается между неподвижной и подвижной щеками в результате периодического сближения. Сближение подвижной щеки происходит за счет эксцентрикового вала. Рабочие поверхности щек имеют рифленую (зубчатую) поверхность. В дробилках со сложным качением щеки материал еще и истирается.

    2. Конусные дробилки (рис. 2.2), в которых материал раздавливается и частично изгибается между внешним неподвижным конусом и внутренним дробящим конусом, которые имеют зубчатую рабочую поверхность. Дробящий конус движется по окружности эксцентрично по отношению к внешнему. В конусных дробилках продукт измельчается непрерывно.

    Дробилки классифицируются:

    по технологическому признаку – мелкого и крупного дробления;

    по конструктивному оформлению – с подвешенным валом, консольным и эксцентриковым валами.

    3. Валковые дробилки (рис. 2.3.), в которых материал раздавливается и частично истирается между валками, вращающимися один навстречу другому.

    4. Молотковые дробилки (рис. 2.4), в которых материал дробится при ударе его молотками, свободно подвешенными на быстровращающемся роторе, и частично истирается. Куски дробятся также при ударе друг о друга и дробящие плиты и колосники. Есть молотковые дробилки с жестко закрепленными молотками и шарнирно подвешенными молотками.

    5. Бегуны (рис. 2.5) предназначаются для мелкого дробления и грубого помола. Материал раздавливается и истирается между двумя вращающимися катками и чашей.


    1. Конструкция и принцип действия основных типов мельниц

    2.2.2 Мельницы
    По конструкции и принципу действия различают следующие основные типы мельниц:

    1. Барабанные (шаровые или стержневые) (рис. 2.6) предназначены для тонкого помола. При вращении барабана от электродвигателя через редуктор мелящие тела (шары или стержни) перекатываются (скользят) и материал измельчается ударом и частично истирается. Мельницы могут быть периодического и непрерывного действия. Основными преимуществами шаровых мельниц – получение высокой и постоянной тонины помола и ее регулирование, возможность подсушки материала в самой мельнице, простота конструкции и надежность работы.


    2. Вибрационные (рис. 2.7) применяют для тонкого и сверхтонкого помола. Они наиболее эффективны при сверхтонком измельчении (1÷10 мкм). Подразделяются на инерционные и гирационные (эксцентриковые). Вибрация корпуса, опирающегося на пружины, осуществляется вращающимся дисбалансным валом. В этом случае материал подвергается многократному воздействию шаров, поскольку число ударов в вибрационной мельнице во много раз больше, чем в шаровой.

    3. Роликово-маятниковые (рис. 2.8) предназначены для размола, в которых материал раздавливается между неподвижным кольцом и быстровращающимися роликами.

    4. Молотковые ударные (рис. 2.9) предназначены для грубого и тонкого помола материалов мягких и средней твердости и в некоторых случаях с одновременной подсушкой его. Принцип действия, как и у молотковых дробилок.
    5. Дезинтеграторы (рис. 2.10) относятся к группе молотковых мельниц и предназначены для измельчения влажных и термочувствительных материалов, например при получении древесного волокна. Измельчение происходит при ударе частиц о пальцы, а также при ударе частиц одна о другую, имеет место и частичное истирание.

    6. Пневматические (рис. 2.11) предназначены для тонкого измельчения, в которых материал измельчается при ударе. Кусочки материала подхватываются воздухом, нагнетаемым через сопло. Частицы летят со скоростью 20÷80 м/с и ударяются о размольную плиту, а также друг о друга.

    7. Струйные (рис. 2.12) предназначены для сверхтонкого помола. Размол в них происходит за счет соударения частиц, находящихся в турбулентном воздушном потоке, скорость которого сверхзвуковая около 480 м/с. Мельница выполнена в виде эллиптической трубы, в нижней части которой имеются сопла для по дачи воздуха. Частицы материала из приемного бункера поступают в зону диффузора трубы (1), где подхватывается воздухом, поступающим по трубе (2). Затем материал подается в корпус мельницы. В верхней части корпуса мелкие частицы после удара о заслонку (торможения) уносятся из корпуса через патрубок. Более крупные частицы за счет большой инерции движутся по корпусу вниз и снова подхватываются потоком воздуха, соударяясь друг о друга.



    1. Оценка степени диспергирования материалов



        1. Оценка степени диспергирования материалов


    При измельчении и диспергировании твердое тело под действием внешних сил делится на части с образованием новых поверхностей. Важными характеристиками измельчаемого материала является форма и размер частиц, а самого процесса диспергирования – степень диспергирования (или измельчения).

    Для оценки получаемой смеси частиц необходимо знать средний размер частиц диспергируемой фазы, а также дисперсию среднего размера частиц и объемного содержания диспергируемой фазы по объему смеси. Информация о размерах диспергируемой фазы получают различными методами дисперсионного анализа (таблица 2.1)

    В зависимости от размеров наиболее крупных кусков исходного и частиц измельченного

    материала различают следующие виды измельчения (таблица 2.2).
    Таблица 2.1 – Методы дисперсионного анализа

    Метод анализа

    Размер частиц, м

    (граница применимости)

    Ситовой

    Сендиметационный

    Кондуктометрический

    Микроскопии

    Фильтрования

    Центрифугирования

    Ультрамикроскопии

    Нефелометрии

    Элетронной микроскопии

    10-2 ÷ 10-4

    10-4 ÷ 10-6

    10-4 ÷ 10-6

    10-4 ÷ 10-7

    10-5 ÷ 10-7

    10-6 ÷ 10-8

    10-7 ÷ 10-9

    10-7 ÷ 10-9

    10-7 ÷ 10-9


    Таблица 2.2 – Классификация измельчения материалов

    Класс

    измельчения

    Размер кусков исходного материала (Dc), мм

    Размер кусков измельченного материала (dc), мм

    Дробление:

    • крупное

    • среднее

    • мелкое

    Помол:

    • грубый

    • средний

    • тонкий

    • коллоидный


    1000

    250

    20
    1÷5

    0,1÷0,04

    0,1÷0,04

    0,1


    250

    20

    1÷5
    0,1÷-0,04

    0,015÷0,005

    0,0050,001

    0,001


    Наиболее широко используется ситовой анализ и микроскопия (последняя в виде пленок и микроатомных срезов). При ситовом анализе в практике широко распространено измерение частиц по минимальному диаметру круглого отверстия, через которое может пройти частица. На практике исходный материал и продукт измельчения представляет собой смесь, состоящую из частиц размерами от d