Файл: 1 Начало промышленного производства ряда полимеров и пластмасс.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 331

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Потери на трение в уплотнениях из кожаных или резиновых манжет:

Потери на трение в уплотнениях манжет на основе пластиката ПВХ:

Периоды формования

4.6.6.10 Технологические расчеты при литье под давлением

Тема Т7 Технология и оборудование каландрования Конструкции и классификация каландров 6.2 Конструкции и классификация каландров и вальцовКонструкция универсальных каландров позволяет выполнять большинство технологических операций, производимых в процессе каландрования. Кроме того, существуют специализированные листовальные, промазочные, обкладочные (дублировочные), гладильные и тиснительные каландры.Каландры классифицируются в зависимости от назначения, количества расположения валков (рис. 6.1), типа привода и характера давления валков на материал.В зависимости от типа привода каландры бывают с одним общим и с индивидуальными приводами на каждый валок. По характеру давления валков на материал каландры бывают: с регулируемым давлением валков и изменяемым при помощи нажимных устройств зазором между ними; с постоянным давлением валков и переменным автоматически меняющимся зазором, зависящим от толщины материала. Наибольшее распространение получил четырехвалковый каландр с Г-образным расположением валков (рис. 6.2). Для вращения каждого из валков применяют индивидуальный привод, состоящий из электродвигателя и редуктора. Конструкция привода обеспечивает независимое плавное регулируемое изменение скорости вращения валков. Отношение скоростей вращения соседних валков называется фрикцией. Ее величина определяется конкретной технологической операцией, выполняемой в межвалковом зазоре. Например, в случае промазки тканей для интенсификации процесса затекания полимера в пространство между валками величину фрикции устанавливают в пределах 1:1,3÷1:1,4. Кроме того, фрикция необходима для более равномерного прогрева и гомогенизации полимерного материала, поступающего в зазор между валками. Рабочим органом каландра, формирующим полотно пленки или листа, являются валки. К качеству поверхности валков предъ­являются высокие требования, как к поверхности, так и форме. Высокое давление (7÷70 МПа), развивающееся в зазоре между валками каландра, вызывает значительные распорные усилия, достигающие до 100 тс (1 МН). Под действием распорных усилий валки прогибаются. Следствием этого является неравномерная толщина полотна полимерного материала по ширине. Наиболее толстым полотно оказывается в середине, где прогиб валка достигает максимального значения.Для компенсации прогиба с целью получения равнотолщинного полотна применяют следующие методы: бомбировка валков, перекос валков и контризгиб валков (рис. 6.3). Бомбировка валков заключается в придании им бочкообразной формы. Увеличение диаметра средней части валка по сравнению с диаметром по краю обеспечивает только частичную компенсацию прогиба, поскольку прогиб зависит от величины распорного усилия. Оно определяется вязкостью перерабатываемого материала, режимом переработки, размерами зазора. На заводе-изготовителе оборудования валку придается усредненная форма на основе расчетов для широкого круга перерабатываемых материалов и режимов.Компенсацию прогиба валков непосредственно при наладке конкретного технологического режима переработки при помощи механизма перекоса валков, предусмотренного в конструкции каландра. Клинья механизма перекоса разводят концы крайних валков в горизонтальной плоскости. Прогиб компенсируется тем, что зазоры по краям валков становятся больше, чем в середине. Сочетание бомбировки и перекоса валков является в настоящее время основным способом компенсации прогиба.Реже в качестве дополнительного приема применяются контризгиб валков. В этом случае прогиб валков уменьшается за счет усилия от гидроцилиндров, прикладываемого к шейкам валка в направлении, противоположном направлению распорного усилия. Недостаток этого способа более тяжелые условия работы подшипников валков.Комбинация указанных методов компенсации прогиба валков позволяет довести отклонение толщины полотна материале по его ширине до 1÷2 мкм.Каландрование осуществляется при температурах, соответствующих нахождению полимерного материала в вязко-текучем состоянии. Обогрев валков может осуществляться двумя способами подвода теплоносителя под рабочую поверхность валков (рис. 6.4): с центральным каналом для подвода теплоносителя и с переферийными каналами. Равномерный обогрев валка поддерживается системой термостатирования. При температуре переработки до 200÷220 0С в качестве теплоносителя применяют перегретую воду, пар или пароводяную смесь. Для достижения более высоких температур используют высокотемпературные органические теплоносители (ВОТ) или масляный, или электрообогрев.Особенность каландрования – постепенное уменьшение зазоров между валками по ходу перемещения материала, что приводит к различным величинам запаса материала в начальном, промежуточных и калибрующих зазорах. Количество материала, находящегося в межвалковом зазоре, уменьшается по мере удаления от середины валка к краям; происходит уширение материала. Одновременно с этим сокращается и время пребывания перерабатываемого материала в межвалковом зазоре. Приготовление полимерных композиций для полимерных покрытий 6.4.1 Приготовление полимерных композиций для полимерных покрытийНаносимые на основу полимерные покрытия находятся в жидком или вязко-текучем состоянии. После нанесения покрытий из жидкого полимера образуется прочная пленка. Применение полимеров в жидком состоянии позволяет наносить тонкие покрытия на большую поверхность с минимальными энергозатратами, а также обеспечивает частичную пропитку и лучшее сцепление покрытия с материалом основы. В таблице 6.1. указаны принципы образования покрытия в зависимости от типа полимера и формы исходного сырья Исходя из состояния полимера перед нанесением покрытия, по масштабу производства покрытия из пластизолей занимают ведущее место. Это объясняется тем, что порошкообразные эмульсионные ПВХ, как вы знаете, хорошо диспергируется в пластификаторах. ПВХ-пластизоли (ПВХ+пластификатор) можно хранить при комнатной температуре в течение суток без опасения седиментации (осаждения частиц). Кроме того, они обладают хорошей текучестью, что важно при нанесении покрытий. Путем добавления растворителя уменьшают их вязкость. Такие пасты называются органозоли (ПВХ+пластификатор+растворитель).Для приготовления пластизолей исходные компоненты смеси необходимо дозировать в правильном соотношении и перемешивать. Основные операции приготовления пластизолей и применяемое оборудование указаны в таблице 6.2. Основные компоненты порошкообразный ПВХ и пластификатор должны обладать реологическими свойствами и жизнеспособностью, соответствующими предъявляемым требованиям. Суспензии склонны коагулировать. Для приготовления водных суспензий применяют ПВА, ПАК, ПВХ (см. таблицу 6.1), ПС, латексы НК и СК. Они содержат 40÷50 % полимера, поэтому низковязкие.Добавлением водорастворимых солей ПАК, водорастворимых полимеров – ПВС, казеиновый клей и др. увеличивают вязкость композиции.Из различных низкомолекулярных веществ (мономеров) и промежуточных продуктов производства полимеров (олигомеров) композициями для нанесения покрытий могут служить вещества, обладающие необходимой вязкостью. Требуемая вязкость достигается форполемиризацией или смешением компонентов с различной степенью полимеризации. Растворители при этом не применяются, т.к. их роль выполняют мономеры, содержащиеся в пленке. Технология приготовления смеси в этом случае такая же, как при получении растворов. Выбор полимера ограничен требованием быстрой сушки пленки. Применяют полиуретановую композицию горячего отверждения и олигомеры акрилата.При нанесении покрытий из термопластов (нанесение расплавов) они применяются в виде порошка, гранул, кусков, блоков. При этом порошки агломерируют со вспомогательными веществами. Процесс смешения исходных компонентов совмещают с пластикацией (плавлением). Термопластичные покрытия наносят преимущественно из пластифицированного ПВХ и ПЭ. Технология нанесения полимерных покрытий 6.4.2 Технология нанесения полимерных покрытийтехнология нанесения полимерных покрытий состоит из стадий нанесения покрытия и образования пленки. Основной процесс при нанесении покрытий это пленкообразование. Стадии процесса пленкообразования из ПВХ-пластизолей - желатинизации (желирования) показаны на рис. 6.14.Различают прямой способ нанесения покрытий – непосредственное нанесения покрытий на основу и косвенный способ – нанесение полимерной пасты на транспортерную ленту.Нанесение покрытий осуществляется с помощью раклей, валков, фильтрационным способом, на каландрах, под давлением, разбрызгиванием раствора полимера на основу. Наиболее распространенные первые два способа и на каландрах.Назначение раклей – равномерное распределение полимерной композиции (пасты) на поверхности основы. Ракля представляет собой клиновидный нож, длина рабочей части которого равна ширине полотна основы. Конструкции применяемых раклей показаны на рис. 6.15.На рис. 6.16 представлены три схемы нанесения покрытий с помощью раклей. Обычно ракля устанавливается стационарно вертикально или под углом к ленте материала основы. При нанесении покрытий масса полимерной пасты перед раклей совершает циркуляционное движение. При этом ее а – частицы ПВХ в пластификаторе находятся в виде суспензии или отдельных агломератов; б – диспергирование агломератов при нагреве до 60 0С; в – набухание частиц ПВХ; г – полная сквозная пропитка пластификатором при 100 0С; д – плавление ПВХ при 160 0С, за счет чего границы контакта набухших частиц размываются запас перед раклей поддерживается постоянным. Большое влияние на процесс нанесения покрытий оказывает скорость сдвига в зазоре между раклей и основой: чем меньше толщина покрытия, тем выше скорость сдвига.При помощи валков реализуется принцип мокрого способа нанесения покрытий и возможность нанесения покрытий разнообразны. Принцип мокрого способа заключается в том, что дозирование количество пасты полностью или частично, но регулярно наносится на материал основы. Для промазки применяется один или несколько валков.На рис. 6.17 показан один из вариантов нанесения покрытий валковым способом. Лента – основа проходит вместе с металлической транспортной лентой. Промазочный валок гуммирован.При нанесении полимерных покрытий на каландрах полимер находится в пластичном или эластичном состоянии, благодаря чему он не только обладает хорошей адгезией к материалу основы, но также образует механическую связь с покрываемым материалом (вследствие возможности заполнения пор). Поэтому возможно нанесение с помощью каландров односторонних и многослойных покрытий рис. 6.18. Нанесение двухсторонних или многослойных покрытий осуществляется многократным его пропусканием через каландр.Технические варианты нанесения покрытий каландровым методом показаны на рис. 6.11 при производстве основного линолеума и на рис. 6.18 -- 6.20. На рис. 6.18 показан валковый агрегат для нанесения покрытий из расплавов полимеров, а на рис. 6.19 – двухсторонне нанесение покрытий, когда покрывной полимерный материал применяется в виде пленки. На рис. 6.21 показан кашировальный агрегат при получении клеенки (вариант “д” схемы, рис. 6.9). На рис. 6.22 показана одна из применяемых схем агрегатов производства текстовинита. Технологический процесс производства текстовинита на основе пластизолей ПВХ состоит из нескольких операций. Хлопчатобумажная ткань (молескин, бязь, миткаль, палатка башмачная и др.), предварительно сшитая на швейной машине “зиг-заг” и подсушенная до остаточной влажности 5 %, проходит все операции на текстовинитовом агрегате непрерывного действия.Агрегат включает следующие устройства: натяжной барабан; накладочный стол с раклей, на котором на движущуюся ткань накладывается слой пластизоля заданной толщины; две термокамеры с плитами обогрева (нагрев теплоизлучением), в которой происходит последовательно оплавление и сплавление ПВХ-пасты в пленку; два уплотнительных вала с электрообогревом, служащие для уплотнения и калибрования покрытия; тиснительно-закаточный станок для завершающих операций – нанесение рисунка тиснения (мереи) на пленку, охлаждение текстовинита (закрепление рисунка) и закатку в рулон. Пористые текстовиниты и искусственная замша перед намоткой в рулон направляются на промывку и сушку. При изготовлении искусственной замши на поверхность размягченного ПВХ-слоя насыпают слой Na2SO4. Осевшие в покрытии мелкие кристаллы соли после промывки горячей водой вымываются, образуя замшевидную пористую поверхность. Промывка пористого текстовинита (для обуви), полученного путем нанесения пасты, содержащей глицерин или CaCl2, а также имеющего на поверхности Na2SO4, производится в ванной.Тема Т8 Формование изделий из полимерных композиционных материалов Армирующие наполнители волокнистой структуры для полимерных композитов 7.2 Армирующие наполнители волокнистой структуры для полимерных композитов7.2.1 Армирующие волокнаПочему, именно при создании композиционных материалов было обращено внимание на материалы волокнистого строения, как в качестве наполнителя?Прежде всего тем, что практическая прочность очень тонких нитевидных материалов из различных веществ значительно выше прочности массивных. Высокая прочность волокон органического происхождения, а также неорганических волокон (например, асбест) объясняется:Высокой степенью ориентации цепочечных межмолекулярных образований и упорядоченностью их структуры. Такая структура являются следствием процессов или вытяжки, или ориентации при получении.Нитевидные материалы имеют меньший объем и поверхность по сравнению с объемными изделиями. Следовательно, содержат меньшее количество дефектов, микротрещин и других неоднородностей в своей структуре.Согласно статистической природы прочности материалов прочность определяется количеством структурных дефектов, особенно поверхностных. Так, прочность органических волокон в десятки раз выше прочности массивных образцов, а прочность очень тонких стеклянных и кварцевых волокон на 2÷3 порядка выше массивных материалов (таблица 7.4).Стеклянные волокна являются армирующим наполнителем наиболее распространенного композиционного материала конструкционного назначения – стеклопластиков. Наша отечественная промышленность производит стеклянные наполнители в виде элементарного непрерывного или штапельного волокна Ø2÷40 мкм и более, стеклонитей, стекложгутов различной толщины, стеклотканей разнообразного плетения – плоских и объемных, стекломатов и стеклохолстов различной толщины и плотности. Это дает возможность изготовлять детали и узлы конструкций из стеклопластиков с оптимальными технологическими и эксплуатационными свойствами.Непрерывное стеклянное волокно изготовляют из расплавленной стекломассы путем быстрого вытягивания струи на выходе из фильеры. Короткие волокна получают либо разрезкой непрерывных волокон (рубленное волокно), либо распылением расплавленной стекломассы на выходе из фильеры струей пара, воздуха или горячих газов (штапельное волокно). Непрерывное стеклянные волокна обладают значительно большей прочностью, чем штапельное, и чаще применяются в производстве изделий, предназначенных для высоконагруженных конструкций.Свойства стеклянных волокон во многом определяются их составом. В зависимости от основного назначения стеклянные волокна получают следующих составов: алюмоборсиликатные, алюмосиликатные, магнийалюмосиликатные (высокопрочные), алюмоциркониевые, свинцовые (для радиационной защиты), кремнеземные, кварцевые. Вышеперечисленные волокна почти полностью утрачивают прочность при 700 0С. Для стеклопластиков, эксплуатируемых выше 400÷500 0С, получают из SiO2 и бинарных систем, в которых помимо оксида кремния SiO2 содержатся оксиды HfO2, GeO2, TiO2 или Al2O3.Для более широкого варьирования свойств стеклопластиков выпускаются непрерывные стеклянные волокна не только по форме круглого цилиндра, но и других геометрических форм. Непрерывные стеклянные волокна, имеющие любую форму. кроме цилиндрической, принято называть профильными волокнами.Выпускаются профильные волокна, как показано на рис. 7.1, следующих форм: сплошные и полые.Применение профильных стеклянных волокон в качестве наполнителя дает возможность в случае полых волокон снизить плотность стеклопластиков, увеличить их удельную жесткость при изгибе и прочность при сжатии, улучшить диэлектрические и теплоизоляционные свойства. В случае волокон гексагональной, эллиптической, прямоугольной или гофрированной формой сечения – повысить плотность упаковки волокон в композиции, увеличить прочность и жесткость пластика, особенно в поперечном направлении. В случае стеклянной микроленты – снизить газопроницаемость пластика.Углеродные волокна (карбоволокна) являются основным армирующим наполнителем в полимерных композиционных материалах как углепластики (карбопластики). Углеродные волокна получают высокотемпературным пиролизом в инертной среде. Производство углеродных волокон сложный многостадийный процесс и состоит из четырех этапов: -получение полимерного волокна;-стабилизация на воздухе при 200÷300 0С (глубокая термическая деструкция и циклизация);-карбонизация при температурах до 1500 0С в атмосфере азота с малыми примесями кислорода (до 0,00025 %) для повышения прочности волокна;-высокотемпературная обработка (графитизация) при температурах до 3000 0С в атмосфере азота или аргона, идет кристаллизация графитоподобных образований.Свойства углепластиков зависят от свойств углеродных волокон, которые в свою очередь определяются условиями пиролиза органических волокон. Существует следующая классификация углеродных волокон по физико-механическим свойствам:низкомодульные – (Ер ≤ 10·104 МПа);среднемодульные – (Ер


Центробежные смесители (миксеры) с вертикальным расположением оси вращения перемешивающего устройства в технике переработки полимерных материалов занимают особое место, т.к. представляют универсальный тип машин. Их называют скоростными (центробежными) или турбулентными смесителями. Перемешиваемая масса быстроходным перемешивающим устройством отбрасывается к стенкам аппарата. По стенке она поднимается вверх и перемещается вновь к стенке смесителя. Благодаря этому масса интенсивно перемешивается и разогревается под воздействием диссипативного тепловыделения. Центробежные смесители применяют для приготовления полимерных композиций. Такой смеситель периодического действия показан на рис. 2.21. Они используются в двух вариантах: с обогреваемыми (смесители горячего смешения) и охлаждаемыми (смесители холодного смешения) корпусами.

Универсальным являются двухстадийный турбоскоростной центробежный смеситель, который состоит из двух самостоятельных баков верхнего (горячего смешения) и нижнего (холодного смешения) (рис. 2.22). Принцип работы данного смесителя основан на гидродинамической циркуляции. В верхнем баке перемешивание осуществляется с помощью крыльчатки и центробежного лопастного диска. В нижнем баке смесь перемешивается двухлопастным ротором.

  1. Смесители для пластических (вязких) материалов

2.4.4 Смесители для пластических (вязких) материалов
К высоковязким средам относят расплавы полимеров, пасто- и тестообразные полимерные композиции. Их перемешивание осуществляется в основном различными механическими способами. Совмещение происходит в ламинарном режиме. Такие смесители могут быть периодического и непрерывного действия. В смесителе могут происходить следующие виды течения:

    • тангенциальное – масса перемещается параллельно пути, описываемую рабочим перемешивающим органом;

    • радиальное – масса движется от рабочего органа перпендикулярно оси его вращения;

    • осевое – масса поступает и вытекает из смесителя параллельно оси вращения рабочего органа.

Для перемешивания высоковязких сред наиболее распространены лопастные, планетарные, червячные смесители, вальцы
.

Червячные и дисковые смесители и вальцы будем рассматривать в темах по экструзии и вальцеванию.

Лопастные смесители периодического действия широко используют в процессах разминания и перемешивания с одновременным нагревом или охлаждением разнообразных пластичных материалов, паст, замазок, клея и т.п. Рабочие органы лопастных смесителей изготовляют обычно в виде двух отдельных Z – образных лопастей сплошного профиля. На рис. 2.23 представлен двухвальный смеситель сZ – образные лопастями. Лопасти вращаются в противоположных направлениях с различными скоростями. Смесители работают под вакуумом или атмосферным давлением. Смесь выгружается или опрокидыванием смесителя или через нижний выгрузочный затвор. Недостатки двухвальных смесителей: большой расход энергии, сложность загрузки и продолжительность очистки после каждого цикла.

Планетарные смесители, у которых смешивающий рабочий представляет собой лопасть Т или П-образной формы и вращается вокруг своей оси одновременно движется вокруг корпуса смесителя (рис. 2.24). Движения могут быть направлены как в одну, так и в разные стороны. В некоторых планетарных смесителях вращается и корпус. Есть шнековые планетарные смесители, в которых шнек вращается вокруг свой оси и одновременно вокруг оси конического корпуса.
Роторные смесители лопасти, которых занимают 60 % объема закрытой смесительной камеры. Эти смесители называют закрытыми роторными смесительными машинами. Лопасти таких смесителей носят название роторов. Наиболее распространены двухроторные скоростные смесители периодического действия типа “Бенбери” (рис. 2.25). Основными путями повышения интенсивности процесса смешения в этих машинах являются увеличение частоты вращения роторов и повышение давления смеси.

Зубчато-дисковые мешалки (дисольвер), где рабочим органом служит зубчатый диск смесительной головки. Диск представляет собой плоскую круглую пластину с расположенными по кромке зубцами (рис. 2.26). Привод мешалки обслуживает несколько передвижных емкостей-деж, которые фиксируются зажимами. Смесительная головка опускается в дежу и диском приводит во вращательно-бегающее движение композицию.


  1. Оборудование для сушки полимерных материалов

2.5 Оборудование для сушки полимерных материалов
В производстве полимерных материалов значительное место занимает сушка промежуточных и конечных продуктов, а также часто и сушка при их переработке. Сушка может происходить при непосредственном соприкосновении влажного материала с теплоносителем (конвективная) или через обогревательную стенку (контактная), токами высокой частоты и инфракрасным излучением. Последние два способа нашли применение для сушки пропитанных термореактивными связующими волокнистых и тканных наполнителей.



Конвективные сушилки для полимерных материалов классифицируются в зависимости от:

  • давления в рабочем пространств: атмосферные и вакуумные;

  • цикличности процесса: периодические и непрерывные;

  • движения теплоносителя по отношению к высушиваемому материалу – прямоточные, противоточные, перекрестные;

  • конструкции – барабанные, гребковые, туннельные, шахтные, вальцовые, ленточные, распылительные, “кипящего слоя”, турбинные, роторные и комбинированные.

В крупносерийном производстве при переработке термопластов на экструзионном и литьевом оборудовании, работающем в автоматическом режиме, устанавливаются приемные бункера-сушилки, а также специальные сушилки с регенерацией влажного воздуха, например, системы “Colotronick”, позволяющие высушивать гранулы до остаточной влажности 0,0002%. Например, в сушилке марки СТТ 20412, в которой воздух не только нагревается, но из него также удаляется влага (проходит через адсорбент), прежде чем он проходит через сушильную воронку с гранулами термопласта. Функциональная схема сушилки представлена на рис. 2.29. Сушильные секции работают поочередно: первая на стадии сушки, вторая – на стадии регенерации (очистки от влаги адсорбента). После достижения точки росы в первой секции, она переключаются на режим регенерации, а вторая – на режим сушки.

  1. Оборудование для дозирования материалов

2.6 Оборудование для дозирования материалов
В производстве и переработке полимерных материалов дозирование исходных материалов является одной из основных технологических операций. Весоизмерительные и весодозирующие устройства применяются для дозирования сыпучих и жидких материалов. По назначению они разделяют на шесть групп:

  1. Весы дискретного действия изготавливают с коромыслами шкального типа, с циферблатными и квадратными указателями, с цифроуказывающими и печатающими указательными приборами и пультами, с печатающими аппаратами автоматической записи результатов взвешивания.

  2. Весы непрерывного действия конвейерные и ленточные, ведущие непрерывный учет массы транспортируемого материала.

  3. Дозаторы дискретного действия и к ним относятся дозаторы для суммарного учета (порционные весы) и дозаторы для фасовки сыпучих материалов, используемые в технологических процессах, а также специальные комплексы и линии автоматического дозирования.

  4. Дозаторы непрерывного действия, используемые в различных технологических процессах, где требуется непрерывная подача материала с заданной производительностью.


К пятой и шестой группе относятся образцовые весы и гири, передвижные весоповерочные средства, устройства для специальных измерений.

В непрерывном технологическом процессе производства полимерных композиций, когда дозирование сухих компонентов ведется дискретным или пульсирующими способами, но с определенным периодом, применяют автоматические дозаторы. Например, весы автоматические дозировочные ДСС-1 (рис. 2.30), дозаторы автоматические для составных частей полимерных материалов ОДП-2 (рис. 2.31). Для загрузки дозаторов применяют винтовые шнековые питатели, например ПШ-220 (рис. 2.32).
На центральных складах сырья предприятий для учета поступающих на переработку полимерных материалов применяют следующие весы: платформенные типа РП (шкальные и циферблатные), автомобильные и вагонные типа РС.

Для порционного дозирования жидкостей применяют весовые дозаторы, например, дозатор автоматический для жидких составных частей полимерных материалов АВДЖ (рис. 2.33).

При дозировании жидких материалов применяется как объемное, так и весовое дозирование. Для объемного дозирования при работе смесителей непрерывного действия широко применяют насосы-дозаторы марки НД (рис. 2.34). Это агрегаты электронасосные, дозировочные, одноплунжерные предназначены для объемного дозирования жидкостей, эмульсий суспензий с кинематической вязкостью от 0,0035 до 8 см2 с температурой от минус 15 до 200 0С и концентрацией твердой фазы до 10 % (масс).


  1. Оборудование для таблетирования полимерных материалов

2.7 Оборудование для таблетирования полимерных материалов

Таблетирование – процесс изготовления из порошкового или волокнистого термореактивного пресс-материала заготовок (таблеток), определенной формы, размеров и плотности. Прессование одно- или двухстороннее является основным этапом таблетирования (рис. 2.35).
Под действием давления прессуемый материал из порошкообразного или волокнистого превращается в пористое, а затем м твердое тело. Основным фактором, обеспечивающим образование прочной таблетки при прессовании, являются силы электростатического притяжения. Они проявляются при сближении частиц на расстоянии порядка 10-8 см. Это обеспечивается без нагрева материала при давлении 75÷120 МПа. Обычно таблетирование осуществляется в цилиндрических матрицах между двумя пуансонами
, при их движении навстречу друг другу (схема брис. 2.35). Наиболее распространенна цилиндрическая форма таблеток с плоскими основаниями.

Таблетирование применяется для повышения плотности, теплопроводности материала, удаления воздуха между частицами, уменьшения размеров загрузочных камер пресс-форм, сокращения длительности предварительного подогрева и цикла прессования пресс-изделий, и уменьшения пыления, и обеспечения чистоты рабочего места прессовщика и транспортировке, повышения точности дозирования и качества пресс-изделий.

Таблетирование осуществляют в автоматических таблеточных машинах. Таблеточные машины, применяемые в промышленности полимерных материалов и других отраслях, например, в фармацевтической, по существу являются пресс-автоматами (более 50 типов), специализированными для выпуска таблеток определенных размеров и массы.

По виду привода таблет-машины делятся на механические и гидравлические. Механические, в свою очередь, делятся на кривошипные (эксцентриковые) и ротационные. По расположению рабочих органов они могут быть горизонтальными (гидравлические) и вертикальными (механические).

Кривошипные (эксцентриковые) таблет-машины с усилием таблетирования от 20 до 1000 кН применяются для изготовления точных по массе таблеток диаметром Ø12÷100 мм и высотой 15÷200 мм. На рис. 2.36 представлена кинематическая схема работы машины. По конструкции она представляет собой автоматический однопозиционный пресс с приводом всех исполнительных механизмов от главного коленчатого вала. Эксцентрик при помощи тяги перемещает загрузочное устройство к матрице. В нее высыпается доза таблетируемого материала. Затем загрузочное устройство отводится назад, а пуансон, приводимый в движение через шатун, опускается вниз и прессует таблетку. После подъема пуансона эксцентрик при помощи тяги и выталкивателя выталкивает таблетку из матрицы.

Ротационные таблет-машины – многопозиционный пресс-автомат, в котором все операции осуществляются при не прерывном вращении ротора. Ротационные машины имеют высокую производительность от 6,6 до 338 тыс. шт/ч в зависимости от числа комплектов пуансонов и матриц, расположенных в роторе от 4 до 47). Усилие таблетирования не велико 60÷200 кН. Поэтому такие машины применяют для изготовления небольших таблеток Ø20÷40 мм. Таблетки отличаются по массе. На рис. 2.37 представлен общий вид отечественной машины марки МТ-3А (модернизация МТ-3А и МТР-6,5*2). На