Файл: Типы аккумуляции и пути расходования энергии в биосистемах (реферат).docx

Добавлен: 10.02.2019

Просмотров: 1575

Скачиваний: 29

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УО «ПОЛЕССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСТИТЕТ»






Факультет банковского дела

Кафедра высшей математики и информационных технологий




Реферат на тему:

«Типы аккумуляции и пути расходования энергии в биосистемах»

По дисциплине: «Биофизика»












Выполнил:

Студент 4 курса группы 15НПД-1

Кемеж С.С.

Проверил:

Доцент, к.с/х.н.

Минюк О.Н.











ПИНСК 2018


СОДЕРЖАНИЕ




ВВЕДЕНИЕ

Биофизика – наука о наиболее простых и фундаментальных взаимодействиях, лежащих в основе биологических процессов. Теоретическое построение и модели биофизики основаны на физических понятиях энергии, силы, типов взаимодействия, на общих понятиях физической и формальной кинетики, термодинамики, теории информации. Эти понятия отражают природу основных взаимодействий и законов движения материи, что как известно, составляет предмет физики – фундаментальной естественной науки. В центре внимания биофизики как биологической науки лежат биологические процессы и явления. Основная тенденция современной биофизики – проникновение в самые глубокие, элементарные уровни, составляющие молекулярную основу структурной организации живого.

Основной итог начального периода развития биофизики – это вывод о принципиальной приложимости в области биологии основных законов физики как фундаментальной естественной науки о законах движения материи. Важное общеметодологическое научное значение для развития разных областей биологии имеют полученные в этот период экспериментальные доказательства закона сохранения энергии (первый закон термодинамики), утверждение принципов химической кинетики как основы динамического поведения биологических систем, концепции открытых систем и второго закона термодинамики в биологических системах, наконец, вывод об отсутствии каких-либо особых «живых» форм энергии.

Важнейшее свойство живых организмов заключается в их способности улавливать, преобразовывать и запасать энергию в различных формах. Общие законы, определяющие превращения энергии, изучаются термодинамикой.



  1. Типы Аккумуляции и пути расходования энергии в биосистемах



В процессе энергетического метаболизма происходит аккумуляция энергии, полученной в результате окислительно-восстановительных превращений субстратов в такую форму, которая может быть использована для роста клеток и осуществления всех их функций.

Основными типами аккумуляции энергии в клетки являются:

  1. трансмембранная разность электрохимических потенциалов ионов;

  2. макроэргические химические соединения.

Поступление веществ в организм происходит в результате дыхания (кислород) и питания. В ЖКТ продукты питания расщепляются до простых веществ. При расщеплении происходит гидролиз полимеров (белков, полисахаридов и других сложных органических веществ) до мономеров, всасывающихся в кровь и включающихся в промежуточный обмен.

Промежуточный обмен (внутриклеточный метаболизм) включает 2 типа реакций: катаболизм и анаболизм.

1. Катаболизм – процесс расщепления органических молекул до конечных продуктов. Реакции катаболизма сопровождаются выделением энергии (экзергонические реакции).

2. Анаболизм объединяет биосинтетические процессы, в которых простые строительные блоки соединяются в сложные макромолекулы, необходимые для организма. В анаболических реакциях используется энергия, освобождающаяся при катаболизме (эндергонические реакции).


Процессы катаболизма в клетках животных сопровождаются потреблением кислорода, который необходим для реакций окисления. В результате этих реакций происходит освобождение энергии, которая необходима организмам в процессах жизнедеятельности для осуществления различных видов работы.

Живые организмы с точки зрения термодинамики – открытые системы. Между системой и окружающей средой возможен обмен энергии, который происходит в соответствии с законами термодинамики.

Первый закон – закон сохранения энергии; его можно сформулировать так: общая энергия системы и окружающей среды - величина постоянная.

Второй закон гласит, что все физические и химические процессы в системе стремятся к необратимому переходу полезной энергии в хаотическую, неуправляемую форму. Мерой перехода или неупорядоченности системы служит величина, называемая энтропией (S), она достигает максимума, когда система приходит в истинное равновесие с окружающей средой.

Направление химической реакции определяется значением ΔG. Если эта величина отрицательна, то реакция протекает самопроизвольно и сопровождается уменьшением свободной энергии. Такие реакции называют экзергоническими. Если при этом абсолютное значение ΔG велико, то реакция идёт практически до конца, и её можно рассматривать как необратимую.

Если ΔG положительно, то реакция будет протекать только при поступлении свободной энергии извне; такие реакции называют эндергоническими.

Если абсолютное значение ΔG велико, то система устойчива, и реакция в таком случае практически не осуществляется. При ΔG, равном нулю, система находится в равновесии.

В клетках самопроизвольно протекают только те химические процессы, которые приводят к уменьшению свободной энергии системы.

В биологических системах термодинамически невыгодные (эндергонические) реакции могут протекать лишь за счёт энергии экзергонических реакций. Такие реакции называют энергетически сопряжёнными. Многие из этих реакций происходят при участии аденозинтрифосфата (АТФ), играющего роль сопрягающего фактора. Сопряжение двух реакций возможно при наличии общего промежуточного продукта.

Например, фосфорилирование глюкозы (1). Реакция фосфорилирования глюкозы свободным фосфатом с образованием глюкозо-6-фосфата является эндергонической:

Глюкоза + Н3РО4 → Глюкозо-6-фосфат + Н2О (ΔG = +13,8 кДж/моль) (1).

Для протекания такой реакции в сторону образования глюкозо-6-фосфата необходимо её сопряжение с другой реакцией (2), величина свободной энергии которой больше, чем требуется для фосфорилирования глюкозы.

АТФ → АДФ + Н3РО4 (2)

(ΔG = -30,5 кДж/моль).

При сопряжении процессов (1) и (2) в реакции, катализируемой гексокиназой фосфорилирование глюкозы, легко протекает в физиологических условиях; равновесие реакции сильно сдвинуто вправо, и она практически необратима:


Глюкоза + АТФ → Глюкозо-6-фосфат + АДФ (ΔG = -16,7 кДж/моль).

Пример 2, реакции с участием глутаминсинтетазы. Сначала концевая фосфатная группа переносится с АТФ на глутамат с образованием высокоэнергетического смешанного ангидрида. Далее фосфатная группа промежуточного продукта вытесняется NH3 с образованием глутамина и свободного фосфата. Баланс и величина ΔGo суммарной реакции соответствуют сумме балансов и значений свободных энергий отдельных реакций.

Биологические мембраны содержат «ионные каналы», по которым отдельные ионы избирательно проникают через мембрану. Проницаемость и полярность мембраны зависят от электрохимического градиента, т. е. от концентраций ионов по обе стороны мембраны (концентрационного градиента) и от разности электрических потенциалов между внутренней и внешней сторонами мембраны (мембранного потенциала). На внутренней стороне плазматической мембраны преобладает избыток отрицательных зарядов. Потенциал покоя обеспечивается, прежде всего, катионами Na+ и K+, а также органическими анионами и ионом Cl-. Распределение ионов между внешней средой и внутренним объемом клетки описывается уравнением Нернста:

где ΔΨG – трансмембранный потенциал (в вольтах, В), т.е. разность электрических потенциалов между двумя сторонами мембраны при отсутствии транспорта ионов через мембрану (потенциал равновесия).

Ионы гидроксония («H+-ионы») также могут формировать электрохимический градиент. свободная энергия переноса протона (разность между электрохимическими потенциалами протонов на двух сторонах мембраны) зависит от градиента концентрации, т. е. от разности рН (ΔpH) по ту и другую стороны мембраны. Кроме того, определенный вклад вносит и трансмембранный потенциал ΔΨ. Обе эти величины формируют протондвижущую силу Δp, являющуюся мерой работы ΔΨ, которую может совершать H+-градиент.

Образование протонного градиента в дыхательной цепи также сопряжено с окислительно-восстановительным процессом:

Механизм регуляции образования и потребления АТФ называется дыхательным контролем. Он основан на сопряжении упомянутых процессов с общими коферментами и другими факторами. В отсутствие АДФ АТФ-синтаза не в состоянии использовать протонный градиент на внутренней митохондриальной мембране. Это в свою очередь тормозит электронный перенос в дыхательной цепи, вследствие чего НАДН не может быть вновь окислен в НАД+. Возникающее в результате высокое соотношение НАДН/НАД+ тормозит цитратный цикл. И наоборот, высокие скорости потребления АТФ стимулируют усвоение пищи и дыхательную цепь по тому же механизму.

Если создание протонного градиента подавлено, процессы окисления субстрата и переноса электронов протекают значительно быстрее, чем обычно. При этом вместо синтеза АТФ выделяется тепло.