Файл: 1 вопрос. Артериальная гиперемия.pdf

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 10.01.2024

Просмотров: 352

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
быстро (критически) и медленно (литически). Быстрое падение температуры может быть опасным, особенно у лиц пожилого возраста, перенесших инфаркт миокарда или имеющих кардиосклероз. Кризис может привести к коллапсу от острой сердечной недостаточности.
4вопрос
Гипероксическая гипоксия (в авиации, при кислородотерапии) - могут быть 2 формы кислородного отравления - легочная и судорожная. Патогенез легочной формы связывают с исчезновением "опорной" функции иннертного газа, токсическим действием O
2
на эндотелий сосудов легких - повышением их проницаемости, вымыванием сурфактанта, спадением альвеол и развитием ателектаза и отека легких. Судорожная форма связана с резким возбуждением всех отделов ЦНС, особенно ствола мозга + нарушение тканевого дыхания.
Гипероксическая гипоксия развивается в результате патогенно высокого парциального давления кислорода (pO2) во вдыхаемом воздухе. Это приводит к значительному повышению напряжения О2 в различных тканях организма, что и становится основным звеном патогенеза гипероксической гипоксии.
В патогенезе данной гипоксии основное место отводят следующим факторам:
- токсическому действию как на клеточные, так и интерстициальные структуры организма кислорода, его свободных радикалов и перекисей;
- недостатку (угнетению) антиоксидантной системы (SH-содержащих энзимов, глутатионов, пероксидазы, каталазы, супероксид-дисмутазы и др.);
- снижению в спинном и головном мозге содержания тормозных медиаторов — глицина и ГАМК (нередко обусловливающему развитие судорожного синдрома, т.н. кислородной эпилепсии);
- угнетению синтеза ДНК и РНК в тканях, а значит угнетению и извращению образования и действия внутриклеточных белков и различных пептидных ФАВ, в том числе гормонов;
- повреждению клеточных и субклеточных мембран различных тканей и органов
(мозга, печени, почек и, особенно, лёгких) и т.д.
БИЛЕТ 30 1.Общие механизмы формирования претромботических состояний.
2.Основные саногенетические реакции при воспалении.
3.Основные виды нарушения теплового баланса организма, механизмы развития и последствия.
4.Устойчивость отдельных органов и тканей к кислородному голоданию. Факторы, определяющие индивидуальную чувствительность организма к гипоксии.
1вопрос
Претромботическое состояние системы гемостаза (ПССГ), так называемая
«тромботическая болезнь», – это состояние организма, которое характеризуется склонностью к повышенному внутрисосудистому свертыванию крови и тромбообразованию. Данный патологический процесс обусловлен нарушениями регуляторных механизмов системы гемостаза, приводящими к изменениям свойств и функционирования отдельных ее звеньев.
1) дефицит ингибиторов коагуляционного звена системы гемостаза (антитром- бнна III, альфа-2-макроглобулина, протеина С, протеина S);
2) увеличение в крови уровня фибриногена, факторов VII и VIII, фактора Виллебранда;
3) повышение функциональной активности тромбоцитов;


4) снижение фибринолитической активности крови;
5) снижение антитромбогенной активности сосудистой стенки. Повышенная наклонность к тромбогенезу, обусловленная указанными изменениями в системе гемостаза, наблюдается при различных по этиологии и клиническим проявлениям заболеваниях, а также некоторых состояниях организма
2.вопрос
Покраснение является следствием артериальной гиперемии, и, следовательно, не может иметь патогенетического смысла, поскольку артериальная гиперемия ведет к усилению насыщения тканей кислородом, увеличению приноса с кровью питательных веществ, интенсивному удалению обменных шлаков.
Припухлость, то есть увеличение воспаленного участка в объеме и сдавление вследствие этого окружающих тканей, носит несомненно защитный характер, поскольку при этом в первую очередь сдавливаются наиболее мягкие образования, к которым относятся вены и лимфатические сосуды. Их сдавление препятствует оттоку крови и лимфы от очага воспаления, а следовательно, не дает возможности воспалительному агенту диссеминировать по организму. Другими словами, осуществляется локализация причинного фактора в месте его воздействия.
Боль представляет собой сигнал для организма об определенном неблагополучии в каком-либо из его регионов. Она заставляет щадить пораженный орган, а для человека является причиной обращения к врачу на самой ранней стадии процесса, пока последний еще не вызвал необратимых изменений в органах и тканях.
Согласно образному выражению врачей древности: «Боль - это сторожевой пес здоровья».
Ограничение функции воспаленного участка переводит его в щадящий режим деятельности, что способствует менее интенсивному протеканию воспалительной реакции и меньшей степени альтерации тканей.
Таким образом, можно утверждать, что кардинальные признаки воспаления либо имеют выраженный защитно-приспособительный характер, либо в их основе лежат соответствующие саногенетические реакции.
Теперь рассмотрим значимость основных компонентов воспаления.
Альтерация, хотя и приводит к гибели определенного количества клеток, но именно она «запускает» всю воспалительную реакцию, направленную на локализацию, уничтожение или удаление вредоносного агента. Альтерация является для клеток и тканей сигналом о наступившем неблагополучии и включает ряд механизмов, направленных на то, чтобы снизить интенсивность повреждения, локализовать его и восполнить возникший дефект.
Экссудация приводит к возникновению воспалительного отека, который, сдавливая вены и лимфатические сосуды, препятствует диссеминации воспалительного агента.
Экссудация также является пусковым моментом процессов миграции лейкоцитов, то есть самой первой стадией процесса фагоцитоза, без которой он невозможен, поскольку для того, чтобы лейкоциты вышли из просвета сосуда и направились бы в эпицентр воспаления, необходимо повышение проницаемости стенок сосудов и замедление кровотока.


Пролиферация в целом направлена на восполнение возникшего в процессе воспалительной реакции тканевого дефекта: она является фактором несомненно положительным, направленным на достижение полного выздоровления.
В очаге воспаления существенно меняется энергетический обмен, в частности, процессы анаэробного расщепления углеводов начинают преобладать над процессами их аэробного метаболизма. С точки зрения энергетического баланса клеток это, действительно, менее для них выгодно. Однако для такой стадии фагоцитоза, как передвижение лейкоцитов к объекту, усиление анаэробных процессов образования энергии является необходимым.
Наконец, образование
в
очаге
воспаления
биологически
активных
веществ интенсифицирует динамику воспаления, что ведет к более быстрому и выгодному для организма его завершению.
3.вопрос
Действие различных факторов может привести к изменению теплового баланса организма, что проявляется либо гипертермическими, либо гипотермическими состояниями (схема).
Гипертермические состояния характеризуются повышением, а гипотермические — понижением температуры тела, соответственно выше и ниже нормы. Чаще эти отклонения носят временный, обратимый характер (например, при лихорадке и гипертермических реакциях). Однако если патогенный агент обладает высоким повреждающим действием, а адаптивные механизмы организма недостаточны, то указанные состояния могут перейти гомеостатический порог и даже обусловить смерть человека.
ГИПЕРТЕРМИЧЕСКИЕ СОСТОЯНИЯ И ИХ ВИДЫ
ГИПЕРТЕРМИЯ
Гипертермия, или перегревание организма, — типовая форма расстройства теплового обмена, возникающая в результате действия высокой температуры окружающей среды или нарушения процессов теплоотдачи организма. Она характеризуется срывом механизмов теплорегуляции и проявляется повышением температуры тела выше нормы.
• высокая температура окружающей среды;
• факторы, препятствующие теплоотдаче, что сопровождается увеличением образования доли так называемой свободной энергии, выделяющейся в виде тепла;
• влияние разобщителей процессов окисления и фосфорилирования в митохондриях клеток, что может быть следствием:

— первичного расстройства механизмов терморегуляции, например при кровоизлиянии в область гипоталамуса, участвующего в регуляции температурного режима организма;
— нарушения процессов отдачи тепла в окружающую среду, например у тучных людей, при ношении влагонепроницаемой одежды или высокой влажности воздуха.
Эти факторы могут действовать содружественно и повышать возможность возникновения гипертермии.
Различают две стадии гипертермии — компенсации (адаптации) и декомпенсации
(деадаптации) механизмов терморегуляции организма.
Стадия компенсации характеризуется активацией экстренных механизмов адаптации организма к перегреванию. Эти механизмы направлены на увеличение теплоотдачи и снижение теплопродукции. В результате температура тела хотя и повышается, однако остается в пределах верхней границы нормального диапазона.
Стадия декомпенсации характеризуется срывом и неэффективностью как центральных, так и местных механизмов терморегуляции. Это обусловливает нарушение температурного гемостаза организма, что является главным звеном патогенеза стадии.
ТЕПЛОВОЙ УДАР
Тепловой удар — форма гипертермии, характеризующаяся быстрым развитием жизненно опасного уровня температуры тела, который составляет 42—43 °С. Он является следствием быстрого истощения и срыва приспособительных процессов, характерных для стадии компенсации гипертермии.
Причинам1 дезадаптации могут быть:
• действие теплового фактора высокой интенсивности;
• низкая эффективность механизмов адаптации организма к повышенной температуре внешней среды. В связи с этим перегревание после кратковременной стадии компенсации быстро приводит к срыву механизмов терморегуляции организма и интенсивному нарастанию температуры тела. Следовательно, тепловой удар — это гипертермия с непродолжительной стадией компенсации, быстро переходящая в стадию декомпенсации.
СОЛНЕЧНЫЙ УДАР
Причина: прямое воздействие энергии солнечного излучения на организм, преимущественно на голову. Наибольшее патогенное действие наряду с другими оказывает радиационное тепло, которое прогревает одновременно и поверхностные, и глубокие ткани организма. Кроме того, инфракрасное излучениеинтенсивно прогревает и ткань головного мозга, в котором располагаются нейроны центра терморегуляции. В связи с этим солнечный удар развивается быстротечно и чреват смертельным исходом.
Патогенез солнечного удара представляет собой комбинацию механизмов гипертермии и собственно солнечного удара, который включает:
• нарастающую артериальную и венозную гиперемию головного мозга;
• увеличение образования цереброспинальной жидкости и избыточное наполнение ею мягкой мозговой оболочки, что вызывает набухание и сдавление вещества головного мозга. В свою очередь венозная гиперемия приводит к плазморрагии, отеку, гипоксии и множественным диапедезным кровоизлияниям в ткани мозга, в том числе в регионе ядер центра терморегуляции. Это обусловливает нарушение его функции по регуляции теплоотдачи и в целом по поддержанию температурного гомеостаза.
ЛИХОРАДКА
Лихорадка — типовая терморегуляторная реакция организма на действие пирогенного фактора, характеризующаяся динамической перестройкой функции системы терморегуляции и временным повышением температуры тела выше нормы вне зависимости от температуры внешней среды. Лихорадка отличается от других

гипертермических состояний сохранением механизмов терморегуляции на всех этапах ее развития.
Причины.
Пирогены — вещества, вызывающие повышение температуры тела.
ГИПОТЕРМИЧЕСКИЕ СОСТОЯНИЯ
К гипотермическим состояниям относят:
• гипотермию; управляемую (искусственную) гипотермию, или медицинскую гибернацию.
ГИПОТЕРМИЯ
Гипотермия — типовая форма расстройства теплового обмена организма, возникающая в результате действия на него низкой температуры внешней среды или значительного снижения теплопродукции в нем и характеризующаяся нарушением механизмов теплорегуляции. что проявляется снижением температуры тела ниже нормы.
Причины гипотермии:
• низкая температура внешней среды;
• параличи мышц или уменьшение их массы, например при атрофии в результате кровоизлияния в мозг;
• крайняя степень истощения организма.
Условия, способствующие возникновению гипотермии:
• повышенная влажность воздуха;
• увеличение скорости движения воздуха (ветер);
• влажная или мокрая одежда;
• попадание в холодную воду, что сопровождается быстрым охлаждением организма, поскольку вода примерно в 4 раза более теплоемка и в среднем в 25 раз более теплопроводна, чем воздух. В связи с этим замерзание в воде может наблюдаться при сравнительно высокой температуре.
Индивидуальная резистентность организма к охлаждению значительно снижается под действием длительного голодания, физического переутомления, алкогольного опьянения, а также при различных заболеваниях, травмах и экстремальных состояниях.
Механизмы гипотермии. Развитие гипотермии — процесс стадийный. В основе ее формирования лежат более или менее длительное перенапряжение и срыв механизмов терморегуляции организма. В связи с этим выделяют две стадии гипотермии.
1.
Стадия компенсации характеризуется активацией экстренных адаптивных механизмов, направленных на уменьшение теплоотдачи и увеличение теплопродукции. К числу этих механизмов относятся:
• изменение поведения, направленное на "уход" от воздействия холода;
• снижение эффективности процессов теплоотдачи;
• активация процессов теплопродукции;
• "включение" стрессорной реакции.
Благодаря комплексу указанных изменений температура тела хотя и понижается, но еще не выходит за рамки нижней границы нормы. Температурный гомеостаз организма сохраняется.
2. Стадия декомпенсации процессов терморегуляции организма является результатом срыва центральных механизмов регуляции теплового обмена. На этой стадии температура тела падает ниже нормального уровня и продолжает снижаться. Температурный гомеостаз организма нарушается.
При нарастании действия охлаждающего фактора наступает замерзание и смерть организма. Непосредственными причинами смерти при глубокой гипотермии являются прекращение сердечной деятельности и остановка дыхания.


Медицинская гипотермия
Управляемая, или медицинская, гипотермия — метод управляемого снижения температуры тела или его части с целью уменьшения интенсивности обмена веществ, уровня функций тканей, органов, физиологических систем и повышения их устойчивости к гипоксии. Управляемая гипотермия используется в медицине в двух разновидностях: общей и местной.
Общая управляемая гипотермия применяется при выполнении операций в условиях значительного снижения или даже временного прекращения кровообращения. Этот метод применяется при операциях на так называемых сухих органах: сердце, головном мозге, легких, крупных сосудах, при использовании искусственного кровообращения.
Локальная управляемая гипотермия отдельных органов или тканей (головного мозга, печени и др.) используется при необходимости проведения оперативных вмешательств или других манипуляций на этих органах для коррекции кровотока, пластических процессов и других целей.
4 вопрос
. Чувствительность различных органов и тканей к гипоксии неодинакова и колеблется в широких пределах. Некоторые ткани, например, кости, хрящи, сухожилия относительно малочувствительны к гипоксии и могут сохранять нормальную структуру и жизнедеятельность в течение многих часов после полного прекращения снабжением кислорода, поперечнополосатая мускулатура - около 2 часов, сердечная мышца, печень, почки - 20-40 минут. Наиболее чувствительна нервная система, но различные ее отделы различаются неодинаковой чувствительности к гипоксии, которая убывает в ряду: кора больших полушарий - мозжечек - зрительный бугор - гиппокамп - продолговатый мозг - спинной мозг - ганглии вегетативной нервной системы. Чем выше функциональная активность нервной ткани, тем более чувствительна она к гипоксии.