Файл: Лекция 1. История вычислительной техники. Принципы построения ЭВМ-1.doc
Добавлен: 13.02.2019
Просмотров: 1529
Скачиваний: 12
-
Общая структура вычислительной системы, назначение ее элементов.
-
Перечислите минимально необходимый состав любой компьютерной системы.
-
Что такое процессор? Каковы основные функции процессора?
-
Какие виды запоминающих устройств используются в компьютере? Их назначение, характеристики.
-
Какие устройства называются периферийными?
-
Перечислите основные устройства ввода информации.
-
Перечислите основные устройства вывода информации. Их назначение и характеристики.
-
Перечислите основные типы внешних запоминающих устройств.
-
Что такое системная шина?
КОНСПЕКТ УРОКА 1
Архитектура ЭВМ - это общее описание структуры и функций ЭВМ на уровне, достаточном для понимания принципов работы и системы команд ЭВМ, не включающее деталей технического и физического устройства компьютера.
-
архитектуре относятся следующие принципы построения ЭВМ:
-
структура памяти ЭВМ;
-
способы доступа к памяти и внешним устройствам;
-
возможность изменения конфигурации;
-
система команд;
-
форматы данных;
-
организация интерфейса.
История развития вычислительной техники
Первым устройством, предназначенным для облегчения счета, были счеты. С помощью костяшек счетов можно было совершать операции сложения и вычитания и несложные умножения.
1642 г. — французский математик Блез Паскаль сконструировал первую механическую счетную машину «Паскалина», которая могла механически выполнять сложение чисел.
1673 г. — Готфрид Вильгельм Лейбниц сконструировал арифмометр, позволяющий механически выполнять четыре арифметических действия.
Первая половина XIX в. — английский математик Чарльз Бэббидж попытался построить универсальное вычислительное устройство, то есть компьютер. Бэббидж называл его аналитической машиной. Он определил, что компьютер должен содержать память и управляться с помощью программы. Компьютер по Бэббиджу — это
механическое устройство, программы для которого задаются посредством перфокарт — карт из плотной бумаги с информацией, наносимой с помощью отверстий (они в то время уже широко употреблялись в ткацких станках).
1941 г. — немецкий инженер Конрад Цузе построил небольшой компьютер на основе нескольких электромеханических реле.
1943 г. — в США на одном из предприятий фирмы IBM Говард Эйкен создал
компьютер под названием «Марк-1». Он позволял проводить вычисления в сотни раз
быстрее, чем вручную (с помощью арифмометра), и использовался для военных расчетов.
В нем использовалось сочетание электрических сигналов и механических приводов.
«Марк-1» имел размеры: 15 * 2—5 м и содержал 750 000 деталей. Машина была способна
перемножить два 32-разрядных числа за 4 с.
1943 г. — в США группа специалистов под руководством Джона Мочли и Проспера Экерта начала конструировать компьютер ENIAC на основе электронных ламп.
1945 г. — к работе над ENIAC был привлечен математик Джон фон Нейман, который подготовил доклад об этом компьютере. В своем докладе фон Нейман сформулировал общие принципы функционирования компьютеров, т. е. универсальных вычислительных устройств. До сих пор подавляющее большинство компьютеров сделано в соответствии с теми принципами, которые изложил Джон фон Нейман.
1947 г. — Экертом и Мочли начата разработка первой электронной серийной машины UNIVAC (Universal Automatic Computer). Первый образец машины (UNIVAC -1) был построен для бюро переписи США и пущен в эксплуатацию весной 1951 г. Синхронная, последовательного действия вычислительная машина UNIVAC -1 была создана на базе ЭВМ ENIAC и EDVAC. Работала она с тактовой частотой 2,25 МГц и содержала около 5000 электронных ламп. Внутреннее запоминающее устройство емкостью 1000 12-разрядных десятичных чисел было выполнено на 100 ртутных линиях задержки.
1949 г. — английским исследователем Морнсом Уилксом построен первый компьютер, в котором были воплощены принципы фон Неймана.
1951 г. — Дж. Форрестер опубликовал статью о применении магнитных сердечников для хранения цифровой информации, В машине «Whirlwind-1» впервые была применена память на магнитных сердечниках. Она представляла собой 2 куба с 32 -32-17 сердечниками, которые обеспечивали хранение 2048 слов для 16-разрядных двоичных чисел с одним разрядом контроля на четность.
1952 г. — фирма IBM выпустила свой первый промышленный электронный компьютер IBM 701, который представлял собой синхронную ЭВМ параллельного действия, содержащую 4000 электронных ламп и 12 000 диодов. Усовершенствованный вариант машины IBM 704 отличался высокой скоростью работы, в нем использовались индексные регистры и данные представлялись в форме с плавающей запятой.
После ЭВМ IBM 704 была выпущена машина IBM 709, которая в архитектурном плане приближалась к машинам второго и третьего поколений. В этой машине впервые была применена косвенная адресация и впервые появились каналы ввода — вывода.
1952 г. — фирма Remington Rand выпустила ЭВМ UNIVAC-t 103, в которой впервые были применены программные прерывания. Сотрудники фирмы Remington Rand использовали алгебраическую форму записи алгоритмов под названием «Short Code» (первый интерпретатор, созданный в 1949 г. Джоном Мочли).
1956 г. — фирмой IBM были разработаны плавающие магнитные головки на воздушной подушке. Изобретение их позволило создать новый тип памяти — дисковые запоминающие устройства (ЗУ), значимость которых была в полной мере оценена в последующие десятилетия развития вычислительной техники. Первые ЗУ на дисках появились в машинах IBM 305 и RAMAC. Последняя имела пакет, состоявший из 50 металлических дисков с магнитным покрытием, которые вращались со скоростью 12000 об. /мин. На поверхности диска размещалось 100 дорожек для записи данных, по 10 000 знаков каждая.
1956 г. — фирма Ferranti выпустила ЭВМ «Pegasus», в которой впервые нашла воплощение концепция регистров общего назначения (РОН). С появлением РОН устранено различие между индексными регистрами и аккумуляторами, и в распоряжении программиста оказался не один, а несколько регистров-аккумуляторов.
1957 г. — группа под руководством Д. Бэкуса завершила работу над первым языком программирования высокого уровня, получившим название ФОРТРАН. Язык, реализованный впервые на ЭВМ IBM 704, способствовал расширению сферы применения компьютеров.
1960-е гг. — 2-е поколение ЭВМ, логические элементы ЭВМ реализовываются на базе полупроводниковых приборов-транзисторов, развиваются алгоритмические языки программирования, такие как Алгол, Паскаль и другие.
1970-е гг. — 3-е поколение ЭВМ, интегральные микросхемы, содержащие на одной полупроводниковой пластине тысячи транзисторов. Начали создаваться ОС, языки структурного программирования.
1974 г. — несколько фирм объявили о создании на основе микропроцессора Intel-8008 персонального компьютера — устройства, выполняющего те же функции, что и большой компьютер, но рассчитанного на одного пользователя.
1975 г. — появился первый коммерчески распространяемый персональный компьютер Альтаир-8800 на основе микропроцессора Intel-8080. Этот компьютер имел оперативную память всего 256 байт, клавиатура и экран отсутствовали.
Конец 1975 г. — Пол Аллен и Билл Гейтс (будущие основатели фирмы Microsoft) создали для компьютера «Альтаир» интерпретатор языка Basic, позволивший пользователям просто общаться с компьютером и легко писать для него программы.
Август 1981 г. — компания IBM представила персональный компьютер IBM PC. В качестве основного микропроцессора компьютера использовался 16-разрядный микропроцессор Intel-8088, который позволял работать с 1 мегабайтом памяти.
1980-е гг. — 4-е поколение ЭВМ, построенное на больших интегральных схемах. Микропроцессоры реализовываются в виде единой микросхемы, Массовое производство персональных компьютеров.
1990-е гг. — 5-е поколение ЭВМ, сверхбольшие интегральные схемы. Процессоры содержат миллионы транзисторов. Появление глобальных компьютерных сетей массового пользования.
2000-е гг. — 6-е поколение ЭВМ. Интеграция ЭВМ и бытовой техники, встраиваемые компьютеры, развитие сетевых вычислений.
Принципы построения и архитектура ЭВМ
1.1. Основные характеристики ЭВМ
Электронная вычислительная машина - комплекс технических и программных средств, предназначенный для автоматизации подготовки и решения задач пользователей.
Структура - совокупность элементов и их связей. Различают структуры технических, программных и аппаратурно-программных средств.
Архитектура ЭВМ - это многоуровневая иерархия аппаратурно-программных средств, из которых строится ЭВМ. Каждый из уровней допускает многовариантное построение и применение. Конкретная реализация уров ней определяет особенности структурного построения ЭВМ.
Одной из важнейших характеристик ЭВМ является ее быстродействие, которое характеризуется числом команд, выполняемых ЭВМ за одну секунду. Поскольку в состав команд ЭВМ включаются операции, различные по длительности выполнения и по вероятности их использования, то имеет смысл характеризовать его или средним быстродействием ЭВМ, или предельным (для самых «коротких» операций типа «регистр - регистр»). Современные вычислительные машины имеют очень высокие характеристики по быстродействию, измеряемые сотнями миллионов операций в секунду. Например, новейший микропроцессор Merced, совместного производства фирм Intel и Hewlett-Packard, обладает пиковой производительностью более миллиарда операций в секунду.
Другой важнейшей характеристикой ЭВМ является емкость запоминающих устройств. Этот показатель позволяет определить, какой набор программ и данных может быть одновременно размещен в памяти. В настоящее время персональные ЭВМ теоретически могут иметь емкость оперативной памяти 768Мбайт (chipset BX). Этот пока-затель очень важен для определения, какие программные пакеты и их приложения могут одновременно обрабатываться в машине.
Надежность - это способность ЭВМ при определенных условиях выполнять требуемые функции в течение заданного периода времени. Например, у современных HDD среднее время наработки на отказ достигает 500 тыс.ч. (около 60 лет).
Точность - возможность различать почти равные значения. Точность получения результатов обработки в основном определяется разрядностью ЭВМ, а также используемыми структурными единицами представления информации (байтом, словом, двойным словом). С помощью средств программирования языков высокого уровня этот диапазон может быть увеличен в несколько раз, что позволяет достигать очень высокой точности.
Достоверность - свойство информации быть правильно воспринятой. Достоверность характеризуется вероятностью получения безошибочных результатов. Заданный уровень достоверности обеспечивается аппаратурно-программными средствами
контроля самой ЭВМ. Возможны методы контроля достоверности путем решения эталонных задач и повторных расчетов. В особо ответственных случаях проводятся контрольные решения на других ЭВМ и сравнение результатов.
1.2. Классификация средств ЭВТ
Традиционно электронную вычислительную технику (ЭВТ) подразделяют на аналоговую и цифровую. Редкие образцы аналоговой ЭВТ используются в основном в проектных и научно-исследовательских учреждениях в составе различных стендов по отработке сложных образцов техники. По своему назначению их можно рассматривать как специализированные вычислительные машины.
То, что 10-15 лет назад считалось современной большой ЭВМ. в настоящее время является устаревшей техникой с очень скромными возможностями. В этих условиях любая предложенная классификация ЭВМ очень быстро устаревает и нуждается в корректировке. Например, в классификациях десятилетней давности широко использовались названия мини-, миди- и микроЭВМ, которые почти исчезли из обихода.
Академик В.М. Глушков указывал, что существуют три глобальные сферы деятельности человека, которые требуют использования качественно различных типов ЭВМ.
Первое направление является традиционным - применение ЭВМ для автоматизации вычислений.. Отличительной особенностью этого направления является наличие хорошей математической основы, заложенной развитием математических наук и их приложений. Первые, а затем и последующие вычислительные машины классической структуры в первую очередь и создавались для автоматизации вычислений.
Вторая сфера применения ЭВМ связана с использованием их в системах управления. Она родилась в 60-е годы, когда ЭВМ стали внедряться в контуры управления автоматических и автоматизированных систем. Математическая база этой сферы была создана в течение последующих 15-20 лет. Новое применение вычислительных машин потребовало видоизменения их структуры. ЭВМ, используемые в управлении, должны были не только обеспечивать вычисления, но и автоматизировать сбор данных и распределение результатов обработки.
Третье направление связано с применением ЭВМ для решения задач ис-кусственного интеллекта. Напомним, что задачи искусственного интеллекта предполагают получение не точною результата, а чаще всего осредненного в статистическом, вероятностном смысле. Примеров подобных задач много: задачи робототехники, доказательства теорем, машинного перевода текстов с одного языка на другой, планирования с учетом неполной информации, составления прогнозов, моделирования сложных процессов и явлений и т.д. Это направление все больше набирает силу. Во многих областях науки и техники создаются и совершенствуются базы данных и базы знаний, экспертные системы. Доя технического обеспечения этого направления нужны качественно новые структуры ЭВМ с большим количеством вычислителей (ЭВМ или процессорных элементов), обеспечивающих параллелизм в вычислениях. По существу, ЭВМ уступают место сложнейшим вычислительным системам.