Файл: Cell and Molecular Biology [High-Yield].pdf

Добавлен: 13.02.2019

Просмотров: 7487

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

78

CHAPTER 12

Eosinophils (Figure 12-2)

A. Eosinophils comprise 0%–4% of the leukocytes in the peripheral circulation.

B. Eosinophils have a bilobed nucleus.

II

C. Eosinophils have highly eosinophilic granules

that contain major basic protein (MBP; binds
to and disrupts membrane of parasites),
eosinophil cationic protein (works with MBP),
histaminase, and peroxidase.

D. Eosinophils have immunoglobulin E (IgE) an-

tibody receptors.

E.

Eosinophils play a role in parasitic infection
(e.g., schistosomiasis, ascariasis, trichinosis).

F.

Eosinophils play a role in reducing the sever-
ity of allergic reactions 
by secreting histami-
nase and PGE

1

and PGE

2

, which degrades his-

tamine (secreted by mast cells) and which
inhibits mast cell secretion, respectively. A
large number of eosinophils are found in
asthma patients.

G. Eosinophils have a lifespan of 1–10 hours; up

to 10 days in tissues.

● Figure 12-2 Eosinophil. EG 

 eosinophilic

granules; MBP 

 major basic protein; ECP 

eosinophilic cationic protein.

PGE

1

PGE

2

MBP
ECP
Histaminase
Peroxidase

EG

IgE antibody
receptors

Basophils (Figure 12-3)

A. Basophils comprise 0%–2% of the leukocytes in the peripheral circulation (i.e., the least

abundant leukocyte).

III

B. Basophils have highly basophilic granules that

contain heparin, histamine, 5-hydroxytrypta-
mine, 
and sulfated proteoglycans.

C. Basophils have IgE antibody receptors.

D. Basophils play a role in Type I hypersensitiv-

ity anaphylactic reactions causing  allergic
rhinitis (hay fever), some forms of asthma, ur-
ticaria
, and anaphylaxis.

E.

Basophils have a lifespan of 1–10 hours; vari-
able in tissues
.

Mast Cells (Figure 12-4)

A. Mast cells arise from stem cells in the bone

marrow.

B. Mast cells play a role in Type I hypersensitiv-

ity anaphylactic reactions, inflammation, and
allergic reactions.

IV

● Figure 12-3 Basophil. BG 

 basophilic

granules.

Heparin
Histamine
5-hydroxytrytamine
Sulfated proteoglycans

BG

IgE antibody
receptors

LWBK771-c12_p77-88.qxd  9/29/10  7:15PM  Page 78 aptara


background image

79

CELL BIOLOGY OF THE IMMUNE SYSTEM

C. Mast cells have IgE antibody receptors on

their cell membranes that bind IgE produced
by plasma cells upon first exposure to an al-
lergen (e.g., plant pollen, snake venom, for-
eign serum), which sensitizes the mast cells.

D. Mast cells secrete the following substances

upon second exposure to the same allergen,
causing the classic wheal-and-flare reaction in
the skin:

1.

Heparin,

which is an anticoagulant and

cofactor for lipoprotein lipase.

2.

Histamine

(produced by decarboxylation

of histidine), which increases vascular
permeability, causes vasodilation, causes
smooth muscle contraction of bronchi,
and stimulates HCl secretion from parietal
cells in the stomach.

3.

Leukotriene C

4

and D

4

(are eicosanoids

and components of slow-reacting substance
of anaphylaxis), which increase vascular
permeability, cause vasodilation, and cause
smooth muscle contraction of bronchi.

4.

Eosinophil chemotactic factor,

which at-

tracts eosinophils to the inflammation
site.

● Figure 12-4 Mast cell. MG 

 mast cell

granules; ECF-A 

 eosinophilic chemotactic

factor; LTC

4

 leukotriene C

4

; LTD

4

 leuko-

triene D

4

.

LTC

4

LTD

4

Heparin
Histamine
ECF-A

MG

IgE antibody
receptors

Monocytes (Figure 12-5)

A. Monocytes comprise 2%–9% of the leukocytes in the peripheral circulation.

B. Monocytes migrate into peripheral tissues where they differentiate into tissue-specific

macrophages whose function is PHAGOCYTOSIS and ANTIGEN PRESENTATION.

V

C. Monocytes are members of the monocyte-

macrophage system, which includes Kupffer
cells in liver, alveolar macrophages,
macrophages (histiocytes) in connective tis-
sue, microglia in brain, Langerhans cells in
skin, osteoclasts in bone, and dendritic anti-
gen-presenting cells (APCs).

D. Monocytes have granules that are endolyso-

somes that contain acid hydrolases, aryl sul-
fatase, acid phosphatase, and peroxidase.

E.

Monocytes respond to dead cells, microor-
ganisms, and inflammation by leaving the pe-
ripheral circulation to enter tissues and are
then called macrophages.

● Figure 12-5 Monocyte.

LWBK771-c12_p77-88.qxd  9/29/10  7:15PM  Page 79 aptara


background image

80

CHAPTER 12

F.

Monocytes have a lifespan of 1–3 days; circulate in blood for 12–100 hours, and then
enter connective tissue.

Macrophages (Histiocytes; Antigen-Presenting Cells) (Figure 12-6)

A. Macrophages arise from monocytes within the circulating blood and bone marrow.

VI

B. Macrophages are activated by lipopolysaccha-

rides (a surface component of gram-negative
bacteria) and interferon-

 (IFN-).

C. Macrophages secrete interleukin-1 (IL-1;

stimulates mitosis of T lymphocytes), inter-
leukin-6  
(IL-6; stimulates differentiation of 
B lymphocytes into plasma cells), pyrogens
(mediate fever), tumor necrosis factor-

(TNF-

), and granulocyte-macrophage colony-

stimulating factor (GM-CSF).

D. Macrophages have granules that are endolyso-

somes that contain acid hydrolases, aryl sul-
fatase, acid phosphatase, 
and peroxidase.

E.

Macrophages impart natural (innate) immunity
along with neutrophils and NK cells.

F.

MACROPHAGES HAVE A PHAGOCYTIC
FUNCTION

● Figure 12-6 Macrophage. LPS 

 lipo-

polysaccharide; TNF-

  tumor necrosis

factor-

; GM-CSF  granulocyte-macrophage

colony-stimulating factor.

X

X

IL-1
IL-6
Pyrogens
TNF-

α

GM-CSF

Complement
opsonized
pathogen

Antibody
opsonized
pathogen

Bacteria

LPS

Class II
MHC

F
receptors

antibody

C  complement
receptors

1.

F

C

antibody

receptors on the macrophage cell membrane bind antibody-coated for-

eign material and subsequently phagocytose the material for lysosomal digestion.

2.

C3 (a component of complement) receptors

on the macrophage cell membrane

bind bacteria and subsequently phagocytose the bacteria (called opsonization) for
lysosomal digestion.

3.

Certain phagocytosed material (e.g., bacilli of tuberculosis and leprosy, Try-
panosoma cruzi, Toxoplasma, Leishmania, asbestos) cannot undergo lysosomal di-
gestion, so macrophages will fuse to form foreign body giant cells.

4.

In sites of chronic inflammation, macrophages may assemble into epithelial-like
sheets called epithelioid cells of granulomas.

G. MACROPHAGES HAVE AN ANTIGEN-PRESENTING FUNCTION

1.

Exogenous antigens

circulating in the bloodstream are phagocytosed by

macrophages and undergo degradation in phagolysosomes.

2.

Antigen proteins are degraded into antigen peptide fragments, which are presented
on the macrophage cell surface in conjunction with class II major histocompati-
bility complex (MHC).

3.

CD4

helper T cells

with antigen-specific T-cell receptor (TCR) on its cell surface

recognize the antigen peptide fragment.

LWBK771-c12_p77-88.qxd  9/29/10  7:15PM  Page 80 aptara


background image

81

CELL BIOLOGY OF THE IMMUNE SYSTEM

Natural Killer CD16

+

Cell (Figure 12-7)

A. The NK cell is a member of the null cell pop-

ulation (i.e., lymphocytes that do not express
the TCR or cell membrane immunoglobulins
that distinguish lymphocytes as either T cells
or B cells, respectively).

B. NK cells are CD16

and capable of cytotoxic-

ity without prior antigen sensitization.

C. NK cells attack damaged cells, virus-infected

cells, and tumor cells by release of perforins,
cytolysins, lymphotoxins
, and serine es-
terases 
which cause membrane porosity and

VII

● Figure 12-7 Natural killer cell.

CD16

Membrane porosity
Endonuclease-mediated apoptosis

Perforin
Cytolysin
Lymphotoxin
Serine Esterase

endonuclease-mediated apoptosis of the damaged cell, virus-infected cell, or tumor cell.

D. They impart natural (innate) immunity along with neutrophils and macrophages.

B Lymphocyte (Figure 12-8).

In the early fetal development, B-cell lymphopoiesis

(B-cell formation) occurs in the fetal liver. In later fetal development and throughout the
rest of adult life, B-cell lymphopoiesis occurs in the bone marrow. In humans, the bone
marrow is considered the primary site of B-cell lymphopoiesis.

A. HEMOPOIETIC STEM CELLS originating in the bone marrow differentiate into lym-

phoid progenitor cells which later form B stem cells.

B. B stem cells form Pro-B cells which begin heavy chain gene rearrangement.

C. PRE-B CELLS continue heavy chain gene rearrangement.

D. IMMATURE B CELLS (IgM

) begin light chain gene rearrangement and express anti-

gen-specific IgM (i.e., will recognize only one antigen) on its cell surface.

E.

MATURE (OR VIRGIN) B CELLS (IgM

IgD

) express antigen-specific IgM and IgD

on their cell surface. Mature B cells migrate to the outer cortex of lymph nodes, lym-
phatic follicles in the spleen
, and gut-associated lymphoid tissue (GALT) to await
antigen exposure.

F.

EARLY IMMUNE RESPONSE

1.

Early in the immune response, mature B cells bind antigen using IgM and IgD.

2.

As a consequence of antigen binding, two transmembrane proteins (CD79a and
CD79b
) that function as signal transducers cause proliferation and differentiation
of B cells into plasma cells that secrete either IgM or IgD.

G. LATER IMMUNE RESPONSE

1.

Later in the immune response, APCs (macrophages) phagocytose the antigen
where it undergoes lysosomal degradation in endolysosomes to form antigen pep-
tide fragments.

2.

The antigen peptide fragments become associated with the class II MHC and are
transported and exposed on the cell surface of the APC.

3.

The antigen peptide fragment 

 class II MHC on the surface of the APC is recog-

nized by CD4

helper T cells which secrete IL-2 (stimulates proliferation of B and

T cells), IL-4 and IL-5 (activate antibody production by causing B-cell differentia-
tion into plasma cells and promote isotype switching and hypermutation), TNF-

(activates macrophages), and IFN-

 (activates macrophages and NK cells).

VIII

LWBK771-c12_p77-88.qxd  9/29/10  7:15PM  Page 81 aptara


background image

82

CHAPTER 12

4.

Under the influence of IL-4 and IL-5, mature B cells undergo isotype switching
and hypermutation.
a.

Isotype switching is a gene rearrangement process whereby the 

 (mu; M)

and 

 (delta; D) constant segments of the heavy chain (C

H

) are spliced out

and replaced with 

 (gamma; G), 

ε

(epsilon; E), or 

 (alpha; A) C

H

segments.

This allows mature B cells to differentiate into plasma cells that secrete IgG,
IgE, or IgA.

b.

Hypermutation is a mutation process whereby a high rate of mutations occurs
in the variable segments of the heavy chain (V

H

) and light chain (V

or V

).

This allows mature B cells to differentiate into plasma cells that secrete IgG,
IgE, or IgA that will bind antigen with greater and greater affinity.

● Figure 12-8 B-cell lymphopoiesis.

Hemopoietic stem cell

Lymphoid progenitor cell

B stem cell

Pro-B cell
• heavy chain
  gene rearrangement

Pre-B cell
• heavy chain
  gene rearrangement

Immature B cell
• light chain
  gene rearrangement

Mature (virgin)

B cell

Antigen
exposure

Isotype switching

Hypermutation

Bone

marrow

Migrate to:
• Outer cortex of lymph nodes
• Lymphatic follicles of spleen
• Gut-associated lymphoid tissue
   and await antigen exposure

Plasma cell

CD79a

CD79b

I

g

M

I

g

M

I

g

D

LWBK771-c12_p77-88.qxd  9/29/10  7:15PM  Page 82 aptara