Файл: Нормальная физиология ответы на экзамен с задачами.docx

Добавлен: 13.02.2019

Просмотров: 18268

Скачиваний: 126

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Внутреннее ухо представлено улиткой — спирально закрученным костным каналом, имеющим 2,5 завитка, который разделен ос­новной мембраной и мембраной Рейснера на три узкие части (лестницы). Верхний канал (вестибулярная лестница) начинается от овального окна, соединяется с нижним кана­лом (барабанная лестница) через геликотре-му (отверстие в верхушке) и заканчивается круглым окном. Оба канала представляют собой единое целое и заполнены перилим-фой, сходной по составу со спинномозговой жидкостью. Между верхним и нижним кана­лами находится средний (средняя лестница). Он изолирован и заполнен эндолимфой. Внутри среднего канала на основной мембра­не расположен собственно звуковосприни-мающий аппарат — орган Корти (кортиев орган) с рецепторными клетками, представ­ляющий периферический отдел слухового анализатора.

Основная мембрана вблизи овального окна по ширине составляет 0,04 мм, затем по направлению к вершине она постепенно рас­ширяется, достигая у геликотремы 0,5 мм. Над кортиевым органом лежит текториаль-ная (покровная) мембрана соединительно­тканного происхождения, один край которой закреплен, второй — свободен. Волоски на­ружных и внутренних волосковых клеток со­прикасаются с текториальной мембраной. При этом энергия звуковых волн трансфор­мируется в нервный импульс.

Процессы эти начинаются с попадания зву­ковых волн в наружное ухо; они приводят в движение барабанную перепонку. Колебания барабанной перепонки через систему слухо­вых косточек среднего уха передаются на мембрану овального окна, что вызывает ко­лебание перилимфы вестибулярной (верх­ней) лестницы. Эти колебания через гелико-трему передаются перилимфе барабанной (нижней) лестницы и доходят до круглого окна, смещая его мембрану по направлению к полости среднего уха .

Колебания перилимфы передаются также на эндолимфу перепончатого (среднего) ка­нала, что воздействует на основную мембра­ну, состоящую из отдельных волокон, натя­нутых, как струны рояля. Волокна мембраны приходят в колебательные движения вместе с рецепторными клетками кортиева органа, расположенными на них. При этом волоски рецепторных клеток контактируют с тектори-альной мембраной, реснички волосковых клеток деформируются. Возникает вначале рецепторный потенциал, а затем потенциал действия (нервный импульс), который далее проводится по слуховому нерву и передается в другие отделы слухового анализатора.

Основные электрические явления в улитке. В улитке можно зарегистрировать пять различных электрических феноменов.

1. Мембранный потенциал слуховой ре-цепторной клетки характеризует состояние покоя.

2. Потенциал эндолимфы, или эндокохле-арный потенциал, обусловлен различным уровнем окислительно-восстановительных процессов в каналах улитки, в результате чего возникает разность потенциалов (80 мВ) между перилимфой среднего канала улитки (потенциал имеет положительный заряд) и содержимым верхнего и нижнего каналов. Эндокохлеарный потенциал оказывает влия­ние на мембранный потенциал слуховых ре­цепторных клеток, создавая в них критичес­кий уровень поляризации, при котором не­значительное механическое воздействие во время контакта волосковых рецепторных клеток с текториальной мембраной приводит к возникновению возбуждения.


3. Микрофонный эффект улитки был по­лучен в эксперименте на кошках. Электроды, введенные в улитку, соединялись с усилите­лем и громкоговорителем. Если рядом с ухом кошки произносили различные слова, то их можно услышать, находясь у громкоговори­теля в другом помещении. Этот потенциал генерируется на мембране волосковой клетки в результате деформации волосков при со­прикосновении с текториальной мембраной. Частота микрофонных потенциалов соответ­ствует частоте звуковых колебаний, а ампли­туда потенциалов в определенных границах пропорциональна интенсивности звуков ре­чи. Звуковые колебания, действующие на внутреннее ухо, приводят к тому, что возни­кающий микрофонный эффект накладывает­ся на эндокохлеарный потенциал и вызывает его модуляцию.

Микрофонный и суммационный потен­циалы связывают с деятельностью волоско-вых клеток и рассматривают как рецептор-ный потенциал. Потенциал действия слухового нерва регистрируется в его волокнах, частота им­пульсов соответствует частоте звуковых волн, если она не превышает 1000 Гц. При дейст­вии более высоких тонов частота импульсов в нервных волокнах не возрастает, так как 1000 имп/с — это почти максимально воз­можная частота генерации импульсов в во­локнах слухового нерва. Потенциал действия в нервных окончаниях регистрируется через 0,5—1,0 мс после возникновения микрофон­ного эффекта, что свидетельствует о синап-тической передаче возбуждения с волосковой клетки на волокно слухового нерва.

  1. Механизм восприятия частоты и силы звука. Звуковые ощущения: тональность звука, слуховая чувствительность, громкость звука. Адаптация. Бинауральный слух.


Восприятие звуков различной высоты (частоты), согласно резонансной теории Гельмгольца, обусловлено тем, что каждое во­локно основной мембраны настроено на звук определенной частоты. Так, звуки низкой частоты воспринимаются длинными волнами основной мембраны, расположенными ближе к верхушке улитки; звуки высокой частоты воспринимаются короткими волок­нами основной мембраны, расположенными ближе к основанию улитки. При действии сложного звука возникают колебания различ­ных волокон мембраны.

В современной интерпретации резонанс­ный механизм лежит в основе теории места, согласно которой в состояние колебаний вступает вся мембрана. Однако максималь­ное отклонение основной мембраны улитки происходит только в определенном месте. При увеличении частоты звуковых колебаний максимальное отклонение основной мембра­ны смещается к основанию улитки, где рас­полагаются более короткие волокна основ­ной мембраны, — у коротких волокон воз­можна более высокая частота колебаний. Возбуждение волосковых клеток именно этого участка мембраны при посредстве ме­диатора передается на волокна слухового нерва в виде определенного числа импульсов, частота следования которых ниже частоты звуковых волн (лабильность нервных воло­кон не превышает 800—1000 Гц). Частота воспринимаемых звуковых волн достигает 20 000 Гц. Таким способом осуществляется пространственный тип кодирования высоты частоты звуковых сигналов.


При действии тонов примерно до 800 Гц, кроме пространственного кодирования, про­исходит еще и временное (частотное) коди­рование, при котором информация передает­ся также по определенным волокнам слухо­вого нерва, но в виде импульсов (залпов), частота следования которых повторяет часто­ту звуковых колебаний. Отдельные нейроны на разных уровнях слуховой сенсорной сис­темы настроены на определенную частоту звука, т.е. каждый нейрон имеет свой специ­фический частотный порог, свою определен­ную частоту звука, на которую реакция ней­рона максимальна. Таким образом, каждый нейрон из всей совокупности звуков воспри­нимает лишь определенные достаточно узкие участки частотного диапазона, которые не совпадают между собой, а совокупности ней­ронов воспринимают весь частотный диапа­зон слышимых звуков, что и обеспечивает полноценное слуховое восприятие.

Правомерность этого положения под­тверждается результатами протезирования слуха человека, когда электроды вживляют в слуховой нерв, а его волокна раздражают электрическими импульсами разных частот, которые соответствуют звукосочетаниям оп­ределенных слов и фраз, обеспечивая смы­словое восприятие речи. Тональность (частота) звука Человек может воспринимать звуки с частотой коле­бания от 16 до 20 000 Гц. Этот диапазон соответствует 10—11 октавам. Верхняя граница воспринимаемых звуков зависит от возраста: чем человек старше, тем она ниже; старики часто не слышат высоких тонов (например, звука, издаваемого сверчком). У многих животных верхняя граница слуха лежит значительно выше: у собаки, например, удается получить условные рефлексы на очень высокие, неслышимые человеком звуки. Различе­ние частоты звука характеризуется тем минимальным различием по частоте двух звуков, которое еще улавливается человеком. При низких и средних частотах человек способен заметить различия в 1—2 Гц. Встречаются люди с абсолютным слухом: они способны точно узнавать и обозначать любой звук даже при отсутствии звука сравнения.

Слуховая чувствительность. Минимальную силу звука, слышимого человеком в половине случаев его предъявления, называют абсолютной слуховой чувствитель­ностью. Установлено, что пороги слышимости сильно изменяются в зависимости от частоты звука.

В области частот от 1000 до 4000 Гц слух человека обладает максимальной чувстви­тельностью. В этих пределах слышен звук, имеющий ничтожную энергию порядка 1*10-12 Втм2 (1 * 1 0-9 эргс-см2). При звуках ниже 1000 и выше 4000 Гц чувствитель- ность резко уменьшается: например, при 20 и при 20 000 Гц пороговая энергия звука должна быть около 1*10-3 Втм2 (1 эргс-см3) (нижняя кривая AEFGD на 225).

При увеличении силы звука неизменной частоты можно дойти до такой силы, когда звук вызывает неприятное ощущение давления и даже боли в ухе. Звуки такой силы дадут, очевидно, верхний предел слышимости (кривая ABCD на 225) и ограничат область слухового восприятия. Внутри этой области лежат и так называемые речевые поля, в пределах которых по частоте и интенсивности распределяются звуки речи


Д. Определение локализации источника звука возможно с помощью бинаурального слуха — способности слышать одновременно двумя ушами. Благодаря бинауральному слуху человек способен более точно локализовать источник звука, чем при моноауральном слухе, и определять направление звука. Для высоких звуков определение их источника обусловлено разницей силы звука, поступаю­щего к обоим ушам, вследствие различной их удаленности от источника звука. Для низких звуков важной является разность во времени между приходом одинаковых фаз звуковой волны к обоим ушам.

Определение местоположения звучащего объекта осуществляется либо путем воспри­ятия звуков непосредственно от звучащего объекта (первичная локализация), либо путем восприятия отраженных от объекта звуковых волн (вторичная локализация, или эхолокация). При помощи эхолокации ори­ентируются в пространстве некоторые жи­вотные (дельфины, летучие мыши).

Е. Слуховая адаптация— изменение слухо­вой чувствительности в процессе действия звука. Она складывается из соответствующих изменений функционального состояния всех отделов слухового анализатора. Ухо, адапти­рованное к тишине, обладает более высокой чувствительностью к звуковым раздражениям (слуховая сенситизация). При длительном слушании слуховая чувствительность снижа­ется. Большую роль в слуховой адаптации иг­рает ретикулярная формация, которая не только изменяет активность проводникового и коркового отделов слухового анализатора.

  1. Вестибулярный аппарат, его строение и функции. Рецепция положения и движения тела. Статические и статокинетические рефлексы вестибулярного аппарата.

Вестибулярный анализатор анализирует информацию об ускорениях или замедлениях, возни­кающих в процессе прямолинейного или вращательного движения тела, а также при изменении положения головы в пространстве. Импульсы от вестибулорецепторов вызывают перераспределение тонуса скелетной мускула­туры. Среди вестибулярных реакций на первом месте находятся статисти­ческие и статокинетические реакции, обеспечивающие сохранение равно­весия при изменении положения тела и его частей или при возникающих ускорениях во время перемещения тела в пространстве. В осуществлении этих реакций участвуют также и проприорецепторы мышц.

Рецепторы статолитовых органов и полукружных каналов:

Вестибулярный орган состоит из статолитового аппарата и трех полу­кружных каналов, расположенных во внутреннем ухе в трех взаимно пер­пендикулярных плоскостях: фронтальной, сагиттальной и горизонтальной. Возбуждающим фактором для вестибулорецепторов, представленных волосковыми клетками, является наклон волосков вследствие смещения отолитовой мембраны при линейных ускорениях. Рецепторные клетки, на­ходящиеся в ампулах, возбуждаются при угловых ускорениях вследствие движения эндолимфы по полукружным каналам. Вестибулорецепторы относятся к вторичночувствующим и связаны через синапсы с афферент­ными волокнами нейронов вестибулярного ганглия, расположенного в височной кости. Вестибулярные ганглии и ядра: От вестибулярных ганглиев волокна вестибулярного нерва направляют­ся в продолговатый мозг. Импульсы, приходящие по этим волокнам, посту­пают к нейронам бульбарного вестибулярного комплекса: предверное верх­нее ядро Бехтерева, предверное латеральное ядро Дейтерса, ядро Швальбе. Из вестибулярных ядер возбуждения направляются по вестибулоспинальному тракту к мотонейронам мышц-разгибателей; непосредственно к мотонейронам шейного отдела спинного мозга; к глазодвигательным ядрам и мозжечку; к ретикулярной формации и через таламус к задней централь­ной извилине коры большого мозга. Функциональные связи между вышеуказанными структурами обеспе­чивают не только поддержание позы человека (сохранение равновесия), но и координацию двигательных актов при выполнении целенаправленной де­ятельности.


Статические и статокинетические рефлексы: Эти рефлексы способствуют сохранению позы, в их осуществлении большое значение имеет продолговатый и средний мозг.

Статические рефлексы возникают при изменении положения тела или его частей в пространстве: 1) при изменении положения головы в пространстве — это так называемые лабиринтные рефлексы. возникающие в результате раздражения рецепторов вестибулярного аппарата; 2) при изменении положения головы по отношению к туловищу — шейные рефлексы, с проприорецепторов мышц шеи и 3) при нарушении нормальной позы тела — выпрямительные рефлексы с рецепторов кожи, вестибулярного аппарата и сетчатки глаз. Например, при отклонении головы назад повышается тонус мышц-разгибателей спины, а при наклоне вперед — тонус сгибателей (лабиринтный рефлекс). Выпрямительные рефлексы — это последовательные сокращения мышц шеи и туловища которые обеспечивают возвращение тела в вертикальное положение теменем кверху. У человека они проявляются, например, во время ныряния.

Статокинетические рефлексы компенсируют отклонения тела при ускорении или замедлении прямолинейного движения, а также при вращениях. Например, при быстром подъеме усиливается тонус сгибателей, и человек приседает, а при быстром спуске усиливается тонус разгибателей, и человек выпрямляется — это так называемый лифтный рефлекс. При вращении тела реакции противовращения проявляются в отклонении головы, тела и глаз в сторону, противоположную движению. Движение глаз со скоростью вращения тела, но в противоположную сторону и быстрое возвращение в исходное положение — нистагм глаз — обеспечивают сохранение изображения внешнего мира на сетчатке глаз и тем самым зрительную ориентацию.

  1. Обонятельный, вкусовой и висцеральный анализаторы. Классификация интерорецепторов, их роль в поддержании гомеостаза.

Общей особенностью обонятельного и вкусового анализаторов является их способность к анализу внешних химических стимулов и формированию соответствующих обонятельных и вкусовых ощущений. Хемочувствительность рецепторов связана с высокой специфичностью и избирательностью по отношению к молекулам некоторых веществ. Постоян­но действующий химический стимул достаточно быстро приводит к сниже­нию его восприятия. Наконец, любое пищевое или непищевое вещество, по­падающее в ротовую полость, неизбежно несет с собой и запаховый стимул.

Обонятельные рецепторы расположены главным обра­зом в верхней носовой раковине. Они являются первичными биполяр­ными сенсорными клетками, имеющими два отростка: аксон и дендрит, несущий реснички. Запаховое вещество, попадая в носовую полость, вступает в контакт с мембраной ресничек. Сенсорная клетка может реагировать на несколько пахучих веществ, по которым можно построить спектр ответов одиночной обонятельной клетки. Аксоны этих клеток, направляются в обонятельную луковицу и оканчиваются на первичных дендритах отдельной митральной клетки обонятельной луковицы. Импульсы от обонятельных луковиц также поступают в гиппокамп и через амигдалярный комплекс к вегетативным ядрам гипотала­муса. Вкусовые рецепторы - специализиро­ванные сенсорные клетки, наряду с опорными и базальными клетками вхо­дящие в состав вкусовых почек. Всего у человека около 2000 вкусовых почек, которые располагаются на вкусовых сосочках языка, имеющих три разные формы: грибовидные, желобоватые и листовидные.