Файл: Нормальная физиология ответы на экзамен с задачами.docx
Добавлен: 13.02.2019
Просмотров: 18226
Скачиваний: 125
Поведенческие реакции в конечном итоге являются лишь средством достижения полезного приспособительного результата.
Взаимодействие различных структур в складывающейся функциональной системе обусловливает ее дальнейшее развитие на основе частных механизмов интеграции (нервных, гуморальных, эндокринных). В свою очередь, сложившаяся функциональная система детерминирует деятельность отдельных органов, поднимая их работу на новую качественную ступень. Внутреннее единство их функций является необходимым условием формирования функциональной системы управления жизнедеятельностью целостного организма.
-
Физиологические особенности клеток, тканей, органов. Понятие о морфофункциональной единице.
Основным свойством любой ткани является раздражимость, т. е. способность ткани изменять свои физиологические свойства и проявлять функциональные отправления в ответ на действие раздражителей. К общим физиологическим свойствам тканей относятся: 1) возбудимость – способность живой ткани отвечать на действие достаточно сильного, быстрого и длительно действующего раздражителя изменением физиологических свойств и возникновением процесса возбуждения. Мерой возбудимости является порог раздражения. Порог раздражения – это та минимальная сила раздражителя, которая впервые вызывает видимые ответные реакции. Так как порог раздражения характеризует и возбудимость, он может быть назван и порогом возбудимости. Раздражение меньшей интенсивности, не вызывающее ответные реакции, называют подпороговым; 2) проводимость – способность ткани передавать возникшее возбуждение за счет электрического сигнала от места раздражения по длине возбудимой ткани; 3) рефрактерность – временное снижение возбудимости одновременно с возникшим в ткани возбуждением. Рефрактерность бывает абсолютной (нет ответа ни на какой раздражитель) и относительной (возбудимость восстанавливается, и ткань отвечает на подпороговый или сверхпороговый раздражитель); 4) лабильность – способность возбудимой ткани реагировать на раздражение с определенной скоростью. Лабильность характеризуется максимальным числом волн возбуждения, возникающих в ткани в единицу времени (1 с) в точном соответствии с ритмом наносимых раздражений без явления трансформации.
-
Биологические реакции. Раздражимость и раздражение, возбудимость и возбуждение. Принципиальные отличия между раздражением и возбуждением. Классификация раздражителей.
-
Гомеостатическая и барьерная функции кожи, печени, селезенки и иммунной системы.
Раздражимость – это способность клеток, тканей, организма в целом переходить под воздействием факторов внешней или внутренней среды из состояния физиологического покоя в состояние активности. Состояние активности проявляется изменением физиологических параметров клетки, ткани, организма, например, изменением метаболизма.
Возбудимость – это способность живой ткани отвечать на раздражение активной специфической реакцией – возбуждением, т.е. генерацией нервного импульса, сокращением, секрецией. Т.о., возбудимость характеризует специализированные ткани – нервную, мышечные, железистые, которые называются возбудимыми.
Возбуждение – это комплекс процессов реагирования возбудимой ткани на действие раздражителя, проявляющийся изменением мембранного потенциала, метаболизма и т.д.
Возбудимые ткани обладают проводимостью. Это способность ткани проводить возбуждение. Наибольшей проводимостью обладают нервы и скелетные мышцы.
Раздражитель – это фактор внешней или внутренней среды действующий на живую ткань.
Процесс воздействия раздражителя на клетку, ткань, организм называется раздражением.
Все раздражители делятся на следующие группы:
1. По природе: а) физические (электричество, свет, звук, механические воздействия и т.д.);
б) химические (кислоты, щелочи, гормоны и т.д.); в) физико-химические (осмотическое давление, парциальное давление газов и т.д.); г) биологические (пища для животного, особь другого пола); д) социальные (слово для человека).
2. По месту воздействия: а) внешние (экзогенные); б) внутренние (эндогенные).
3. По силе: а) подпороговые (не вызывающие ответной реакции); б) пороговые (раздражители минимальной, силы, при которой возникает возбуждение); в) сверхпороговые (силой выше пороговой).
4. По физиологическому характеру: а) адекватные (физиологичные для данной клетки или рецептора, которые, приспособились к нему в процессе эволюции, например, свет для фоторецепторов глаза); б) неадекватные.
Если реакция на раздражитель является рефлекторной, то выделяют также: а) безусловно-рефлекторные раздражители; б) условно-рефлекторные.
-
Биотоки. Опыты Гальвани и Дюбуа-Реймона. Потенциал покоя и его природа. Мембранно-ионная теория Ю.Бернштейна. Условия и причины поляризации мембраны.
Наблюдение биоэлектрических явлений. В конце XVIII в. (1786 г.) профессор анатомии Болонского университета Луиджи Гальвани провел ряд опытов, положивших начало целенаправленным исследованиям биоэлектрических явлений. В первом опыте, подвешивая препарат обнаженных задних лапок лягушек с помощью медного крючка на железной решетке, Л.Гальвани обнаружил, что всякий раз при касании мышцами решетки они отчетливо сокращались. Л.Гальвани высказал предположение о том, что сокращение мышц является следствием воздействия на них электричества, источником которого выступают «животные ткани» — мышцы и нервы. Однако другой итальянский исследователь — физик и физиолог Вольта оспорил это заключение. По его мнению, причиной сокращения мышц был электрический ток, возникающий в области контакта двух разнородных металлов (медь и железо — гальваническая пара) с тканями лягушки. С целью проверки своей гипотезы Л.Гальвани поставил второй опыт, в котором нерв нервно-мышечного препарата набрасывался на мышцу стеклянным крючком так, чтобы он касался поврежденного и неповрежденного ее участков. В этом случае мышца также сокращалась. Второй опыт Л.Гальвани считается опытом, в котором были получены абсолютные доказательства существования «животного электричества».
Б. Регистрация биоэлектрических явленийвпервые осуществлена с помощью гальванометра, одна из клемм которого присоединялась к поврежденному участку мышцы, другая — к неповрежденному [Маттеучи, 1838], при этом стрелка гальванометра отклонялась. Размыкание цепи гальванометра сопровождалось возвращением стрелки гальванометра в прежнее (нулевое) положение. Еще задолго до появления микроэлектродной техники (конец XIX в.) стало ясно, что «животное электричество» обусловлено процессами, происходящими на клеточной мембране (Герман, Дюбуа-Реймон, Бернштейн). В настоящее время достаточно хорошо изучены механизмы формирования мембранного потенциала покоя (ПП) и потенциала действия (ПД), т.е. процесса возбуждения клетки. Потенциал покоя:относительно стабильная разность электрических потенциалов между наружной и внутренней средой клетки. Его величина обычно варьируется в пределах -30…-90мВ.(Скелетная мышца: -90мВ, нейрон -70мВ, гладкая мышца -50…-60мВ, эндотелий -20мВ).При регистрации ПП луч осцилографа во время прокола мембраны клетки микроэлектродом отклоняется и показывает отрицательный заряд внутри клетки. ПП составляет основу для возникновения ПД, влияет на транспорт веществ в клетку и из клетки. Механизм формирования ПП: причиной является неодинаковая концентрация анионов и катионов внутри и вне клетки. В нервных и мышечных клетках концентрация К+ внутри клетки примерно в 40 раз больше, чем вне клетки, концентрация натрия вне клетки в 12 раз больше нежели в клетке. Ионов Cl- вне клетки в 20 раз больше, чем внутри. В клетке имеется небольшое количество ионов Mg2+. Кальций в свободном состоянии находится в основном вне клетки. Он содержится в ЭПР, митохондриях. В клетке находятся так же крупномолекулярные анионы – главным образом, это отрицательно заряженные белковые молекулы(глутамат, аспартат),органические фосфаты. Различные ионы распределены неравномерно по обе стороны клеточной мембраны вследствие 1)ее неодинаковой проницаемости для различных ионов 2) результате работы ионных насосов 3)в результате наличия на клеточной мембране поверхностного заряда.
-
Структура клеточных мембран и электролитный состав цитоплазмы, их роль в генезе мембранного потенциала. Натриево-калиевый насос. Ионные каналы мембран.
Фосфолипиды образуют двойной прерывистый слой. В этот слой включены белки, полярные группы которых сохраняют контакт с водной фазой. Некоторые белки пронизывают мембрану насквозь, другие погружены в липидный бислой наполовину. Часть белков связана друг с другом; другие в большей или меньшей степени окружены липидами. Одни из них являются ионными каналами, другие содержат боковые цепи гликозаминогликанов.
Гликокаликс. Поверхность мембраны покрыта гликокаликсом — трехмерной сетью нитей гликозаминогликанов, соединенных между собой при помощи кальциевых мостиков. Гликокаликс обеспечивает механическую прочность мембраны, участвует в межклеточных взаимодействиях, рецепции, иммунологическом дифференцировании, разделяет молекулы веществ, контактирующих с клеткой, по величине и заряду. Липиды.Молекулы липидов, образующих бислой, амфотерны. Своими гидрофильными головками они обращены в сторону водных фаз (межклеточная жидкость и цитоплазма) и формируют внешнюю и внутреннюю поверхности мембраны. Важнейшей особенностью мембранных липидов является способность к перекисному окислению (ПОЛ) с образованием свободных радикалов.
Белки. Функциональное отличие мембраны одной клетки от мембраны другой определяется наличием в ней специфических мембранных белков. Белки, погруженные в фосфолипидный слой и пронизывающие его насквозь, называются внутренними мембранными белками, или белковыми каналами. Другие белки — периферические — прикреплены к поверхности клетки. С учетом выполняемых функций мембранные белки всех клеток делят на 5 классов: белки-насосы, белки-каналы, белки-рецепторы, ферменты и структурные белки. Функции мембран. Важнейшими функциями клеточных мембран являются барьерная, биотрансформирующая, транспортная, рецепторная, генерация электрических потенциалов и образование межклеточных контактов. Белки-каналы представляют собой пути избирательного переноса ионов и заряженных молекул. Механизм переноса связан с конформацией белка-канала, в результате которой он открывается или закрывается. Каналы в зависимости от скорости их активации и переноса ионов делят на быстрые (например, натриевые) и медленные (например, калиевые, кальциевые). Для каждого из переносимых через мембрану вида ионов существуют самостоятельные транспортные системы — ионные каналы (натриевые, калиевые, кальциевые, каналы для хлора), основные свойства и механизмы действия которых сходны. Ионные каналы имеют устье и селективный фильтр, а управляемые каналы – и воротный механизм. Заполнены жидкостью, их размеры 0,3-0,8нм. Если заряд канала противоположен заряду иона, то он притягивается. Ионы, проходя через канал должны избавится от гидратной оболочки, иначе их размеры будут больше размеров канала.Через ионные каналы могут проходить и не заряженные частицы.
Na/K насос. Является электрогенным, т.к за один цикл из клетка выводится 3 иона Na, а возвращаются в клетку 2 иона К. на один цикл работы насоса расходуется одна молекула АТФ. Na/K насос представляет собой интегральный белок, пронизывающий всю толщу клеточной мембраны. Он состоит из 4 полипептидов, имеет центры связывания натрия и калия. В положении белка-переносчика, обращенного стороной связывания ионов натрия внутрь клетки, увеличивается сродство их к Na+. В результате чего к трем участкам переносчика присоединяются три иона Na+. В результате этого активируется АТФаза, обеспечивающая гидролиз АТФ и высвобождение энергии, которая расходуется на изменение конформации белка, при этом его сторона, связанная с тремя натриями, обращается наружу клеточной мембраны. Теперь белок теряет сродство к Na+, последний отщепляется от него, а белок-помпа(переносчик) приобретает сродство к К+. Это снова ведет к изменению конформации переносчика: Сторона, связанная с К+, обращается внутрь клетки, в результате чего белок теряет сродство к ионам калия и отщепляется, а белок-переносчик снова приобретает сродство к Na+ это один цикл работы. См24 вопрос
-
Потенциал действия и история его открытия (Маттеучи, Мюллер, Келликер, Дюбуа-Реймон). Методы регистрации потенциала действия. Ионный механизм потенциала действия.
ПД-
впервые открыл Маттеучи(1837г) в опыте
вторичного сокращения. Нерв 2 препарата
лягушки набрасывали на мышцу 1, а нерв
первого раздражали током: сокращались
обе мышцы. Сокращение второй мышцы
происходило в результате раздражения
этой мышцы током, возникающим при
сокращении 1 мышцы. Все клетки организма
имеют заряд – ПП, обеспечиваемый
неодинаковой концентрацией анионов и
катионов внутри и вне клетки. Различие
концентрации является следствием работы
ионных насосов и неодинаковой проницаемости
клеточной мембраны для разных ионов.
При действии раздражителя на клетку
возбудимой ткани вначале повышается
проницаемость мембраны для натрия и
быстро возвращается в норму. Затем то
же самое происходит с калием, вследствие
чего Na быстро перемещается в клетку, а
К+ выходит из клетки согласно
электрохимическому градиенту. Возникает
процесс возбуждения –ПД. ПД- быстрое
колебание величины мембранного
потенциала, вследствие активации и
инактивации ионных каналов и диффузии
ионов в клетку и из клетки. Величина ПД
колеблется в пределах 80-130мВ(у нервного
110мВ, у мышечного до 130мВ)Амплитуда ПД
не зависит от силы раздражения. Она
всегда максимальна для данной клетки
в конкретных условиях(Закон все или
ничего) Фаза
деполяризации:
уменьшение заряда клетки до нуля.Она
развивается при действии деполяризующего
раздражителя на клетку(эл.ток). Открываются
ворота натриевых каналов. Когда
деполяризация достигает КУД – открывается
большое число натриевых каналов и натрий
лавинообразно входит в клетку.Фаза
инверсии:-
изменение заряда клетки на противоположный.
Имеет 2 части: восходящую и нисходящую.
Восходящая обеспечивается в основном
входом натрия в клетку. Нисходящая-
закрытие натриевых каналов и выход
калия на мембрану. Фаза
реполяризации:
восстановление ПП. Калий продолжает
выходить из клетки по концентрационному
градиенту. Теперь клетка снова имеет
внутри отрицательный заряд, а снаружи
положительный и электрический градиент
препятствует выходу калия из клетки.
Т.о. вся нисходящая часть ПД обусловлена
выходом К+ из клетки.
-
Ионная природа потенциала действия. Теория Бернштейна и А.Ходжкина. Ионные каналы. Величина потенциала действия в разных тканях.
Пpиpоду возникновения мембpанного потенциала обьясняет мембpанно-ионная теоpия (пpедложил Ю.Беpнштейн, модифициpовали – А.Ходжкин, А.Хаксли, Б.Катц).
Теоpия основывается на:
1. Особенностях стpоения биологической мембpаны
2. Устойчивой тpансмембpанной ионной ассиметpии (неодинаковой концентpацией ионов Na+,K+,Cl-,Ca2+,HCO3-)
Ионную ассиметpию опpеделяют следующие механизмы:
1. Избиpательная пpоницаемость мембpаны для pазличных ионов