Файл: Нормальная физиология ответы на экзамен с задачами.docx
Добавлен: 13.02.2019
Просмотров: 18237
Скачиваний: 125
По физиологической роли: а. Возбуждающие б. Тормозные
Функц-ей нейронов является их 1.способность к возбуждению. (Возбу-е может возникать как в рез-те синаптических влиян. на нейрон др. нервн. кл, так и за счет эндогенных ЦП процессов. Внеш. выраж. возб-я нейрона явл. колебание электрич. потенциала на его мембране. В невозбужд. нейроне регистрир. МП = 70 мВ. 2. синтез БАВ 3. воспроизведение информации 4. хранение и интеграция информации в пресинаптических окончаниях. 5. в аксоне: аксонный транспорт, генерация электрических импульсов, выделение медиатора.
Каждый нейрон синтезирует в своем теле и затем выделяет во всех своих синапсах один и тот же медиатор, поэтому нейроны и ацетилхолиновой передачей возбуждения называются холинергическими, с адреналиновой – адренергическими.
Дофаминергические нейроны - в гипоталамусе. Норадренергические нейроны - средн. мозг, мост и продолг. мозг. В состав дорсального и медиального ядер продолг. мозга, моста и ср. мозга входят серотонические нейроны.
Интегративная деятельность нейрона: наличие многочисл специф хеморецептивных уч-ков на постсинап. мемб. нейронов. Электрич импульсы, приход. к синапсам нейрона ч/з медиаторы, трансформ. в хим. процессы на постсинапт. мемб., кот. вовлек. в бх процессы ЦП и ядерные стр-ры кл. Внутрикл молекулярные преобразования приходящих к нейрону гетерогенных возбуждений обозначаются как интегративная деятельность нервной клетки. В основе химической теории интегративной деятельности нейрона лежит утверждение о том, что метаболический процесс, развертывающийся в цитоплазме нейрона, закреплен генетически и является специфичным по отношению к отдельным постсинаптическим структурам.
Внутринейронная функциональная связь хеморецептивной части постсинап. мемб. с ЦП проц-ми обеспеч. целой группой биоактивных в-в, вып-щих ф-ции универс. регулят. кл. метаболизма(циклические пуриновые нуклеотиды, простагландины, гормональные в-ва, ионы Ме) Такие медиаторы, как норадреналин, адреналин, дофамин, серотонин, гистамин, специфически активируют мембраносвязанный фермент аденилатциклазу, кот. катализирует синтез цАМФ из АТФ. Медиатор ацетилхолин активирует гуанилатциклазу — фермент, катализирующий образование цГМФ из гуанозинтрифосфата. Повышение активности гуанилатциклазы обеспеч-ся окисью азота (N0) -> из аргинина катализ. синтазой окиси азота, кот. активируется Са2+, связанным с кальмодулином (регуляторный белок). Наличие кальция в нервной клетке имеет отношение к перераспред. Na+ и К+ в кл, синтезу и секреции медиаторов, синтезу белка и РНК, аксоплазматическому транспорту.
При синаптической активации постсинаптических мембран из них выделяются простагландины, которые изменяют энергетический метаболизм нейронов, участвуют в регуляции возбудимости клетки, секреции медиаторов и гормонов.
В
молекулярных механизмах интегративной
деят-ти нейронов большая роль принадлежит
эндогенным нейропептидам и так называемым
мозгоспецифическим белкам. К эндогенным
нейропептидам относятся: тиролиберин,
холецистокинин, ангиотензин II, пролактин,
вазопрессин. Они могут выступать не
только в роли нейромедиаторов, но и в
роли нейромодуляторов, т.е. оказывать
влияние на высвобождение медиаторов
из пресинаптических окончаний и
постсинаптическую р-цию.
-
Рефлекс. Рефлекторная дуга и кольцо. Моно- и полисинапитические рефлексы. Регуляция функций с позиций кибернетики. Отрицательные и положительные обратные связи.
Рефлексы - р-ции организма, вызываемые ЦНС при раздражении рецепторов агентами внутренней или внешней среды; проявляются в возникновении или изменении функциональной деятельности органов и организма в целом.
В рефлекторную дугу входят: 1) нервные окончания, воспринимающие раздражения, — рецепторы; 2) афферентные (центростремительные) нервные волокна — отростки рецепторных нейронов, осуществляющие передачу импульсов от чувствительных нервных окончаний в ЦНС; 3) нервный центр, т. е. нейроны, воспринимающие возбуждение и передающие его эффекторным нейронам через соответствующие синапсы; 4) эфферентные (центробежные) нервные волокна, проводящие возбуждение от ЦНС на периферию; 5) исполнительный орган, деятельность которого изменяется в результате рефлекса. Простейшая двухнейронная, или моносинаптическая, Р. д. образована рецепторным и эффекторным нейронами, между которыми расположен синапс. Многонейронная, или полисинаптическая, Р. д. включает нейроны: рецепторный, несколько вставочных и эффекторный с синапсами между ними. Р. д. не отражает полностью структуру рефлекса, поскольку доказано существование обратной афферентации, т. е. возбуждений, информирующих нервный центр о состоянии исполнительного органа.
Рефлекторное кольцо - совокупность структур нервной системы, участвующих в осуществлении рефлекса и передаче информации о характере и силе рефлекторного действия в центральной нервной системе.
По степени сложности нейронной организации рефлекторных дуг различают моносинаптические Р., дуги которых состоят из афферентного и эфферентного нейронов (например, коленный Р.), и полисинаптические Р., дуги которых содержат также 1 или несколько промежуточных нейронов и имеют 2 или неск. синаптических переключений (например, флексорный Р.).
Рефлекторное кольцо включает в себя: - рефлекторную дугу; и - обратную афферентацию от эффекторного органа в центральную нервную систему.
Обратная отрицательная связь - торможение Реншоу. При возбуждении мотонейронов спинного мозга, нервные импульсы по их аксонам идут к мышечным волокнам, но одновременно они распространяются по коллатералям этого аксона к клокам Реншоу. Аксоны клеток Реншоу образуют тормозные синапсы на телах этих же мотонейронов. В результате, чем сильнее возбуждается мотонейрон, тем более сильное тормозящее влияние на него оказывает тормозной нейрон Реншоу
Положительной обратная связь - Эфферентный разряд, направляющийся в мышцу из мотонейронов, вовлекает в деятельность не только обычные белые или красные мышечные волокнам но и интрафузальные волокна, которые иннервируются гамма - мотонейронами. Сокращение интрафузальных волокон не приводит к заметной двигательной реакции, так как их мало и они не могут вызвать укорочения мышцы.
Однако это сокращение сопровождается очень существенными изменениями деятельности самих мышечных рецепторов, а именно, резким повышением частоты идущего от них афферентного разряда
-
Нервное волокно, его структура и функции. Перерождение после перерезки. Законы проведения потенциала действия в нервах.
Нервн. волокна (НВ) - это отростки нейронов, с помощью кот. осуще-ся связь между нейронами, а также нейронов с исполнит-ми кл. В состав НВ входят осевой цилиндр (нервный отросток) и глиальная оболочка. По взаимоотнош. осевых цилиндров с глиальными кл выделяют два типа нервных волокон: безмиелиновые и миелиновые. Оболочку безмиелиновых волокон образ шванновские клетки (леммоциты). При этом осевые цилиндры прогибают клеточную оболочку леммоцитов и погружаются в них. Клеточная мембрана обычно полностью окруж. каждый осевой цилиндр и смыкается над ним, образуя сдвоенную мембрану (мезаксон).
Оболочку миелиновых волокон образуют в периферич. нервной системе также шванновские клетки, а в ЦНС — олигодендроциты. В отличие от безмиелиновых волокон в миелиновых волокнах мезаксон удлиняется и спирально закручивается вокруг осевого цилиндра, образуя слой миелина (липидный футляр) вокруг осевого цилиндра. Миелиновая оболочка через равные уч-ки прерыв-ся, образ. свободн. от миелина небольшие уч-ки — узловые перехваты Ранвье. Участки волокон между перехватами наз-ся межузловыми сегментами, они образованы слоем миелина.Миелин сост. на 78 % из липидов (фосфолипид 42 %, цереброзидов — 28 %, холестерина — 25 %.) НО миелин требует затраты энергии и обеспеч. О2 и пит. в-вами(или - деструкция :( ). Нервные волокна имеют две основные ф-ции — изолирующ. ф-ция, способствующ. лучшему проведению биопотенциалов по отросткам нейронов. и транспорт в-в, обеспеч. трофическую ф-цию.
Проведение
возбужд. по нервам подчиняется следующим
законам: 1. Закон анатомической и
физиологической целостности нерва.
Первая нарушается при перерезе, вторая
- действии веществ блокирующих проведение,
например новокаина. 2. Закон двустороннего
проведения возбуждения. Оно распространяется
в обе стороны от места раздражения. В
организме чаше всего возбуждение по
афферентным путям оно идет к нейрону,
а по эфферентным - от нейрона. Такое
распространение называется ортодромным.
Очень редко возникает обратное или
антидромное распространение возбуждения.
3. Закон изолированного проведения.
Возбуждение не передается с одного
нервного волокна на другое, входящее в
состав этого же нервного ствола. 4. Закон
бездекрементного проведения. Возбуждение
проводится по нервам без декремента,
т.е. затухания. Следовательно, нервные
импульсы не ослабляются, проходя по
ним. 5. Скорость проведения прямопропорциональна
диаметру нерва. (Нервные волокна обладают
свойствами центрического кабеля, у
которого не очень хорошая изоляция.
-
Механизм проведения потенциала действия в мякотных и безмякотных волокнах. Неутомляемость нервного волокна. Скорость проведения в различных нервах.
Функцию быстрой передачи возбуждения к нервной клетке и от нее выполняют ее отростки - дендриты и аксоны, т.е нервные волокна. В зависимости от структуры их делят на мякотные, имеющие миелиновую оболочку, и безмякотные. Эта оболочка формируется шванновскими клетками, являющиеся видоизмененными глиальными клетками. Они содержат миелин, который в основном состоит из липидов. Он выполняет изолирующую и трофическую функции. Участки, где оболочка прерывается, т.е. не покрыты миелином называют перехватами Ранвье. Функционально все нервные волокна делят на три группы:
1 Волокна типа А - это толстые волокна, имеющие миелиновую оболочку. В эту группу входят 4 подтипа: (альфа) двигательные волокна скелетных мышц и афферентные нервы (рецепторов растяжения). Скорость проведения по ним максимальна (бета) - афферентные волокна, идущие от рецепторов давления и прикосновения кожи. (гамма)- эфферентные волокна, идущие к мышечным веретенам (15-30 м/сек). (сигма) - афферентные волокна от температурных и болевых рецепторов кожи (12-30 м/сек).
2 Волокна группы В - тонкие миелинизированные волокна, являющиеся преганглионарными волокнами вегетативных эфферентных путей.
3 Волокна группы С, безмиелиновые постганглионарные волокна вегетативной нервной системы.
Проведение возбуждения по нервам подчиняется следующим законам: 1. Закон анатомической и физиологической целостности нерва. Первая нарушается при перерезе, вторая - действии веществ, блокирующих проведение, например новокаина. 2. Закон двустороннего проведения возбуждения. Оно распространяется в обе стороны от места раздражения. В организме чаше всего возбуждение по афферентным путям оно идет к нейрону, а по эфферентным - от нейрона. Такое распространение называется ортодромным. Очень редко возникает обратное или антидромное распространение возбуждения. 3. Закон изолированного проведения. Возбуждение не передается с одного нервного волокна на другое, входящее в состав этого же нервного ствола. 4. Закон бездекрементного проведения. Возбуждение проводится по нервам без декремента, т.е. затухания. Следовательно, нервные импульсы не ослабляются, проходя по ним.
5. Скорость проведения прямопропорциональна диаметру нерва. (Нервные волокна обладают свойствами центрического кабеля, у которого не очень хорошая изоляция. В основе механизма проведения возбуждения лежит возникновение местных токов: В результате генерации ПД в аксоном холмике и реверсии мембранного потенциала, мембрана аксона приобретает противоположный заряд. Снаружи она становится отрицательной, внутри положительной. Мембрана нижележащего, невозбужденного участка аксона заряжена противоположным образом. ''Поэтому между этими участками, по наружной и внутренней поверхностям мембраны начинают проходить местные, токи. Эти токи деполяризуют мембрану нижележащего невозбужденного участка нерва до критического уровня к в нем также генерируется ПД. Затем процесс повторяется и возбуждается более отдаленный участок нерва и т.д. Т.к. по мембране безмякотного волокна местные токи текут не прерываясь, поэтому такое проведение называется непрерывным. При непрерывном проведении местные токи захватывают большую поверхность волокна, поэтому им " требуется, длительное время для прохождения по участку волокна. В результате дальность, и. скорость проведения возбуждения по безмякотным волокнам небольшая. В мякотных волокнах участки, покрытые миелином обладают большим электрическим сопротивлением. Поэтому непрерывное проведение ПД Невозможно. При генерации ПД местные токи текут лишь между соседними, перехватами По закону “все или ничего" возбуждается ближайший к аксонному холмику перехват Ранвье, затем соседний нижележащий перехват и т.д. Такое проведение называется сальтаторным (прыжком). При этом механизме ослабления местных токов не происходит, и нервные импульсы распространяются на большое расстояние и с большой скоростью.
-
Скорость проведения потенциала действия в разных нервах. Скорость потенциала действия нервного ствола. Химические изменения в нерве при потенциале действия. Теплопродукция и утомление.
-
Скорость проведения потенциала (ПД) действия в разных нервах. Скорость ПД нервного ствола. Химические изменения в нерве при ПД. Теплопродукция и утомление.
Скорость проведения ПД в миелиновых волокнах в десятки раз выше, чем в наиболее «быстрых» безмиелиновых аксонах.
Энергозатраты нервного волокна на проведение ПД относительно невелики, поскольку возбуждаются только перехваты Ранвье, площадь которых составляет менее 1% общей поверхности мембраны аксона. Поэтому даже после длительных ритмических пачек ПД трансмембранный градиент концентраций ионов практически не изменяется.
В физиологических условиях ПД движутся в одном направлении от места раздражения (ортодромное проведение). ПД, проходящий по нервному волокну, возбуждает следующий, но не предыдущий участок мембраны. Это связано с рефрактерностью предыдущего участка после возбуждения. Проведение в противоположном направлении (антидромное проведение) возможно при травматическом поражении нервных волокон и в редких случаях (аксон–рефлекс).
В периферической нервной системе волокна объединены с помощью соединительнотканных оболочек в нервные стволы (нервы). В одном нерве могут быть тысячи нервных волокон: например, в срединном и мышеч-но-кожном нервах имеется 27—37 тыс. нервных волокон. Волокна в нервах могут быть миелиновыми и безмиелиновыми, афферентными и эфферентными. В естественных условиях каждое волокно нерва возбуждается от своего источника (например, эфферентное — от аксонного холмика, афферентное — от рецептора), и ПД в них проводятся асинхронно. Кроме того, чувствительные и двигательные волокна проводят импульсы в противоположных направлениях. Суммарная электрическая активность нерва создается электрической активностью составляющих его волокон и зависит от числа возбужденных волокон, степени шунтирования местных токов невозбужденными волокнами, синхронности проведения ПД в волокнах. В связи с этим анализ суммарной электрической активности нерва (нейрограммы) представляет трудную задачу.
3. Большая скорость проведения возбуждения. Скорость проведения ПД в различных типах волокон нерва равна 0,5—120 м/с (см. табл. 5.2). Она значительно выше в миелиновых волокнах в связи с сальтаторным типом проведения ПД (см. раздел 5.2.3), а среди ми-елиновых волокон прямо пропорциональна диаметру волокна. Скорость проведения возбуждения в миелиновых нервных волокнах значительно выше, чем в других удлиненных возбудимых структурах, — в гладких миоци-тах (0,02—0,10 м/с), рабочих кардиомиоцитах (около 1 м/с), и только в миоцитах проводящей системы сердца и скелетных миоцитах скорость проведения ПД (2—5 м/с) достигает величин распространения ПД в низкоскоростных нервных волокнах (тип С и В). Передача возбуждения по нервным волокнам является наиболее скоростным из известных способов передачи информации на значительные расстояния в организме. Для сравнения отметим, что скорость передачи гуморальных влияний ограничена скоростью кровотока, которая равна от 0,5 мм/с в капиллярах до 0,25 м/с в аорте (средняя скорость).