Добавлен: 12.01.2024
Просмотров: 94
Скачиваний: 3
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Распределение белков в клетке выглядит так: в миофибриллах - 4% всех мышечных белков, в саркоплазме - 30%, в митохондриях - 14%, в сарколемме - 15%, в ядрах и других клеточных органеллах - около 1%.
Кроме основных сократительных белков, характеристика которых была дана выше, следует отметить еще два: миостромин и миоглобин. Миостромин участвует в образовании сарколеммы и линии Z. Миоглобин - белок, по строению и функции подобный гемоглобину; первичная структура миоглобина приведена выше. В отличие от гемоглобина он не обладает четвертичной структурой; однако сродство миоглобина к кислороду намного выше, чем у гемоглобина.
B мышцах человека содержится дипептид карнозин (аланилгистидин), который принимает участие в ферментативном переносе фосфатных групп и оказывает стимулирующее влияние на передачу импульсов с нерва на мышцу, а также участвует в восстановлении утомленных мышц.
Из органических веществ небелковой природы отметим АТФ, креатинфосфат и гликоген. АТФ является главным источником энергии для мышечного сокращения, креатинфосфат - первый резерв ресинтеза АТФ; гликоген - основной запасной источник энергии в мышце.
Фосфатиды и холестерин входят в состав различных мембран мышечного волокна. Свободные аминокислоты используются биосинтезе мышечных белков.
B мышце содержится ряд промежуточных продуктов обмена углеводов. К ним относятся, прежде всего, пировиноградная и молочная кислоты, а также ферменты гликолиза.
Из минеральных веществ в мышцах имеются главным образом катионы К , Na , Mg , Са , анионы Cl , Н РО , HPО . Перечисленные ионы играют важную роль в регуляции биохимических процессов в сокращающихся мышцах.
-
Мышечное сокращение
B основе мышечного сокращения лежат два процесса:
• спиральное скручивание сократительных белков;
• циклически повторяющееся образование и диссоциация комплекса между цепью миозина и актином.
Мышечное сокращение инициируется приходом потенциала действия на концевую пластинку двигательного нерва, где выделяется нейрогормон ацетилхолин, функцией которого является передача импульсов. Сначала ацетилхолин взаимодействует с ацетилхолиновыми рецепторами, что приводит к распространению потенциала действия вдоль сарколеммы. Все это вызывает увеличение проницаемости сарколеммы для катионов Na , которые устремляются внутрь мышечного волокна, нейтрализуя отрицательный заряд на внутренней поверхности сарколеммы. С сарколеммой связаны поперечные трубочки саркоплазматического ретикулума, по которым распространяется волна возбуждения. От трубочек волна возбуждения передается мембранам пузырьков и цистерн, которые оплетают миофибриллы на участках, где происходит взаимодействие актиновых и миозиновых нитей. При передаче сигнала на цистерны саркоплазматического ретикулума, последние начинают освобождать находящийся в них Са . Высвобожденный Са связывается с Тн-С, что вызывает конформационные сдвиги, передающиеся на тропомиозин и далее на актин. Актин как бы освобождается из комплекса с компонентами тонких филаментов, в котором он находился. Далее актин взаимодействует с миозином, и результатом такого взаимодействия является образование спайки, что делает возможным движение тонких нитей вдоль толстых.
Генерация силы (укорочение) обусловлена характером взаимодействия между миозином и актином. На миозиновом стержне имеется подвижный шарнир, в области которого происходит поворот при связывании глобулярной головки миозина с определенным участком актина. Именно такие повороты, происходящие одновременно в многочисленны участках взаимодействия миозина и актина, являются причиной втягивания актиновых филаментов (тонких нитей) в H-зону. Здесь они контактируют (при максимальном укорочении) или даже перекрываются друг с другом.
Энергию для этого процесса поставляет гидролиз АТФ. Когда АТФ присоединяется к головке молекулы миозина, где локализован активный центр миозиновой АТФазы, связи между тонкой и толстой нитями не образуется. Появившийся катион кальция нейтрализует отрицательный заряд АТФ, способствуя сближению с активным центром миозиновой АТФазы. В результате происходит фосфорилирование миозина, т. e. миозин заряжается энергией, которая используется для образования спайки с активом и для продвижения тонкой нити. После того как тонкая нить продвинется на один «шаг», АДФ и фосфорная кислота отщепляются от актомиозинового комплекса. Затем к миозиновой головке присоединяется новая молекула АТФ, и весь процесс повторяется со следующей головкой молекулы миозина.
Затрата АТФ необходима и для расслабления мышц. После прекращения действия двигательного импульса Са переходит в цистерны саркоплазматического ретикулума. Тн-С теряет связанный с ним кальций, следствием этого являются конформационные сдвиги в комплексе тропонин-тропомиозин, и Тн-I снова закрывает активные центры актина, делая их неспособными взаимодействовать с миозином. Концентрация Са в области сократительных белков становится ниже пороговой, и мышечные волокна теряют способность образовывать актомиозин.
B этих условиях эластические силы стромы, деформированной в момент сокращения, берут верх, и мышца расслабляется. При этом тонкие нити извлекаются из пространства между толстыми нитями диска A, зона H и диск I приобретают первоначальную длину, линии Z отдаляются друг от друга на прежнее расстояние. Мышца становится тоньше и длиннее.
Скорость гидролиза АТФ при мышечной работе огромна: до 10 мк моль на 1 г мышцы за 1 мин. Общие запасы АТФ невелики, поэтому для обеспечения нормальной работы мышц АТФ должна восстанавливаться с той же скоростью, с какой она расходуется.
-
Источники энергии для мышечной работы
Покоящаяся мышца, подобно другим тканям, для поддержания постоянства своего состава и непрерывного протекания метаболических процессов, требует постоянного обеспечения АТФ. B то же время мышца сильно отличается от других тканей тем, что ее потребность в энергии в форме АТФ при сокращений мышцы может почти мгновенно возрастать в 200 раз.
Содержание АТФ в мышце относительно постоянно: около 0,25% массы мышцы. Большая концентрация АТФ приводит к угнетению миозиновой АТФазы, что препятствует образованию спаек между миозином и актином, а следовательно - мышечному сокращению. С другой стороны, концентрация АТФ не может быть ниже 0,1%, поскольку при этом перестает действовать кальциевый насос в пузырьках саркоплазматического ретикулума, и мышца будет сокращаться вплоть до полного исчерпания запасов АТФ и развития ригора - стойкого непреходящего сокращения. Запасов АТФ в мышце достаточно на 3-4 одиночных сокращения. Следовательно, необходимо постоянное и весьма интенсивное восполнение АТФ - ее ресинтез.
Ресинтез АТФ при мышечной деятельности может осуществляться как в ходе реакций, идущих в анаэробных условиях, так и за счет окислительных превращений в клетках, связанных с потреблением кислорода. В скелетных мышцах выявлены три вида анаэробных процессов, в ходе которых возможен ресинтез АТФ, и один аэробный.
Рассмотрим все процессы ресинтеза АТФ в мышце и порядок их включения.
Креатинкиназная реакция. Первым и самым быстрым процессом ресинтеза АТФ является креатинкиназная реакция. Креатинфосфат (Кф) - макроэргическое вещество, которое при исчерпании запасов АТФ в работающей мышце отдает фосфорильную группу на АДФ:
Кф + АДФ ↔ К + АТФ
Катализирует этот процесс креатинкиназа, которая относится к фосфотрансферазам (по названию фермента назван рассматриваемый процесс).
АТФ и креатин находятся рядом и вблизи от сократительных элементов мышечного волокна. Как только уровень АТФ начинает снижаться, немедленно запускается креатинкиназная реакция, обеспечивающая ресинтез АТФ. Скорость расщепления Кф в работающей мышце прямо пропорциональна интенсивности выполняемой работы и величине мышечного напряжения.
B первые секунды после начала работы, пока концентрация Кф высока, высока и активность креатинкиназы. Почти все количество АДФ, образовавшейся при распаде АТФ, вовлекается в этот процесс, блокируя тем самым другие процессы ресинтеза АТФ в мышце. После того как запасы Кф в мышцах будут исчерпаны примерно на 1/3, скорость креатинкиназной реакции будет снижаться; это вызовет включение других процессов ресинтеза АТФ.
Креатинкиназная реакция обратима. Во время мышечной работы преобладает прямая реакция, пополняющая запасы АТФ, в период покоя - обратная реакция, восстанавливающая концентрацию Кф в мышце. Однако ресинтез Кф возможен от части и по ходу длительной мышечной работы, совершаемой в аэробных условиях.
Креатинкиназная реакция играет основную роль в энергообеспечении кратковременных упражнений максимальной мощности - бег на короткие дистанции, прыжки, метание, тяжелоатлетические упражнения.
Гликолиз. Следующий путь ресинтеза АТФ - гликолиз. Ферменты, катализирующие реакции гликолиза, локализованы на мембранах саркоплазматического ретикулума и в саркоплазме мышечных клеток. Гликогенфосфорилаза и гексокиназа - ферменты гликогенолиза и первой реакции гликолиза - активируются при повышении в саркоплазме содержания АДФ и фосфорной кислоты.
Энергетический эффект гликолиза невелик и составляет всего 2 моль АТФ на 1 моль глюкозо-1-фосфата, полученного при фосфоролизе гликогена. Кроме того, следует учесть, что примерно половина всей выделяемой энергии в данном процессе превращается в тепло и не может использоваться при работе мышц; при этом температура мышц повышается до 41-42°С.
Конечным продуктом гликолиза является молочная кислота.
Накапливаясь в мышцах, она вызывает изменение концентрации ионов водорода во внутриклеточной среде, т. e. происходит сдвиг рН среды в кислую область. B слабокислой среде происходит активация ферментов цепи дыхания в митохондриях, с одной стороны, и угнетение ферментов, регулирующих сокращение мышц (АТФазы миофибрилл) и скорость ресинтеза АТФ в анаэробных условиях, с другой. Но, прежде чем перейти к рассмотрению процесса ресинтеза АТФ в аэробных условиях, отметим, что
гликолиз играет важную роль в энергообеспечении упражнений, продолжительность которых составляет от 30 до 150 с. К ним относятся бег на средние дистанции, плавание на 100 и 200 м, велосипедные гонки на треке и др. За счет гликолиза совершаются длительные ускорения по ходу упражнения и на финише дистанции.
Ресинтез АТФ в аэробных условиях. Аэробным процессом ресинтеза АТФ служит окисление глюкозы до оксида углерода (IV) и воды. Сопоставляя энергетические эффекты гликолиза и полного распада глюкозы в аэробных условиях, можно констатировать, что второй процесс отличается наибольшей производительностью. Общий выход энергии при аэробном процессе в 19 раз превышает таковой при гликолизе.
Обратим внимание на тот факт, что АТФ, образующаяся в митохондриях при окислительном фосфорилировании, недоступна АТФазам, локализованным в саркоплазме мышечных клеток, так как внутренняя мембрана митохондрий непроницаема для заряженных нуклеотидов. Поэтому существует система активного транспорта АТФ из матрикса митохондрий в саркоплазму. Сначала транслоказа осуществляет перенос АТФ из матрикса через внутреннюю мембрану в межмембранное пространство, где АТФ вступает во взаимодействие с креатином, проникающим из саркоплазмы. Это взаимодействие катализирует митохондриальная креатинкиназа, которая локализована во внешней мембране митохондрий. Образующийся креатинфосфат снова переходит в саркоплазму, где отдает снятый с АТФ остаток фосфорной кислоты на саркоплазматическую АДФ.
Эффективность образования АТФ в процессе окислительное фосфорилирования зависит от снабжения мышцы кислородом. B работающей мышце запасы кислорода невелики: небольшое количество кислорода растворено в саркоплазме, часть кислород находится в связанном с миоглобином мышц состоянии. Основное количество кислорода, нужного мышце для аэробного ресинтез АТФ, доставляется через систему легочного дыхания и кровообращения. Для образования 1 моль АТФ в процессе окислительного фосфорилирования требуется 3,45 л кислорода; такое количество кислорода потребляется в покое за 10-15 мин, а при интенсивной мышечной деятельности - за 1 мин.