Добавлен: 12.01.2024
Просмотров: 87
Скачиваний: 5
ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
Областное государственное автономное
профессиональное образовательное учреждение
«Новгородский химико-индустриальный техникум»
15.02.14 Оснащение средствами автоматизации технологических
процессов и производств (по отраслям)
РЕФЕРАТ
На тему: Кварцевый генератор
По учебной дисциплине: Основы электортехники и электроники
Руководитель работы Студент гр. 1АТП
Преподаватель, Гулецкий Евгений Сорокин Владислав Сергеевич
Николаевич
_________________________ ___________________________
___________________________
(дата)
Великий Новгород
2023
СОДЕРЖАНИЕ
Введение……………………………………………………………..3
1. Кварцовый генератор ……………………………………………4
2. Виды кварцевых генераторов……………………………………8
3. Разновидности кварцевых резонаторов…………………………15
4. Как проверить кварцевые резонаторы…………………………..16
5. Сфера применения………………………………………………..17
Заключение…………………………………………………………..18
Литература……………………………………………………………19
ВВЕДЕНИЕ
Кварцевый генератор – важный электронный компонент, обеспечивающий очень точную генерацию тактовой частоты за небольшие деньги. Из-за пьезоэлектрического эффекта его электрические свойства меняются в процессе вибрации. Поскольку можно сделать кристалл, который будет вибрировать с определённой частотой, кварцевые генераторы очень полезны для множества применений. Появились они в 1920-х, и сначала обеспечивали точную генерацию волн для радиостанций.
По мере развития электроники все большую роль в аппаратуре начинает играть цифровая техника. Никакие мало-мальски технически сложные устройства, будь то спутниковый ресивер либо схема управления электродвигателем, не обходятся без микропроцессорных узлов, и в них все большую роль играют электронные компоненты, отвечающие за генерацию тактовой частоты: ведь от этого зависит и надежность управляющей системы, и точность показаний измерительного прибора, и устойчивость работы связного передатчика.
Кварцовый генератор
Бурный прогресс в электронике и смежных отраслях привел к тому, что появился новый тип прибора, предназначенного для генерации сигналов с высокой стабильностью. Если рассмотреть схемы многих цифровых (и не только) устройств, то легко заметить, что достаточно распространенными являются узлы генерации частоты. Естественно, если подобный узел
достаточно часто приходится включать в устройство, то вполне логичным ходом является разработка унифицированного модуля, предназначенного как раз для генерации сигнала.
Эти готовые функционально законченные узлы представляют собой резонатор со схемой генерации, усиления и формирования выходного сигнала, помещенные в герметичный корпус. Такой электронный прибор, как правило, не требует большого количества дополнительных элементов обвязки и отличается широким диапазоном исполнений. Если рассматривать корпуса, то тут существует масса исполнений — от полноразмерного DIL-14 до сверхминиатюрных SMD толщиной 1 мм (рис.1). Есть полностью экранированные приборы с заземленным корпусом, есть приборы в керамическом корпусе, существуют и устройства в пластмассовом корпусе — для недорогой техники. Наиболее известными производителями генераторов в мире являются Epson, Ralton, Jauch и Hosonic.
Рис. 1 Корпусы кварцевых генераторов
Генераторы выпускаются во всем разнообразии возможных требований к выходному сигналу: есть генераторы, работающие со стандартной ТТЛ-логикой, с выходным сигналом с КМОП-уровнем для экономичных устройств, а есть и такие, которые выдают на выходе чистую синусоиду, как, например, некоторые генераторы компании Morion. Существует достаточно много видов кварцевых генераторов, имеющих различные функциональные возможности и области применения. В первую очередь стоит отметить отключаемые генераторы, которые имеют управляющий вывод для переключения их в третье высокоимпендансное состояние, благодаря чему появляются довольно широкие возможности для управления генератором. Например, с помощью управляющего вывода можно организовать режим stand-by в том случае, когда необходимо отключить генерацию, либо же в целях снижения энергопотребления устройства.
Типичный представитель — серия генераторов HO-26 производства корпорации Hosonic, способная выдавать КМОП-сигнал с частотой до 125 МГц.
Для кварцевых резонаторов наиболее критичным параметром является стабильность тактовой частоты. Для некоторых устройств, таких, как системы связи, навигации, точной настройки и точного времени, допуск по стабильности, которым обладают типовые резонаторы, уже не удовлетворяет как класс. Следовательно, возникла потребность вдругих приборах, обладающих совершенно другими характеристиками стабильности. Так что же это закомпоненты?
Одна из бурно развивающихся ветвей отрасли — VCXO, генераторы, управляемые напряжением. Эти приборы обладают отличительной особенностью — возможностью изменения тактовой частоты в зависимости от напряжения на управляющем входе (диапазон подстройки может составлять от200 ppm), что открывает широкие возможности для настройки и калибровки вплоть до использования в качестве PLL-генератора. Производством подобных приборов занимается компания Hosonic. Они выпускаются в различных исполнениях —от типового генератора в стандартном корпусе VC-61 досверхминиатюрного компонента для SMD-монтажа VC-S толщиной менее 2 мм.
Частота генератора может изменяться от множества внешних факторов и наиболее критичным здесь является изменение температуры. Теоретически можно взять VCXO и подключить к нему через калибровочный вход схему, которая будет отслеживать изменения через внешний датчик и выдавать некий компенсационный сигнал на выходе, но никакому разработчику не хочется себе лишней головной боли, а стабильность генерации критична… Здесь назревает еще одно техническое решение — термокомпенсированные генераторы напряжения. Они уже содержат схему компенсации температурного дрейфа частоты, при этом точность может достигать значений вплоть до 0,5 ppm. Более того, термостатированные генераторы работают в более широком диапазоне температур, нежели их нетермостатированные собратья — работоспособность сохраняется при температуре вплоть до –60 °С. Термостатированные генераторы обладают еще одним достоинством— меньшим временем выхода на режим (стабильная частота устанавливается за несколько секунд). Существуют различные разновидности генераторовтермостатов, втом числе приборы со схемой термической стабилизации и генераторы сустройствами подогрева кварцевого кристалла. Для высокоточной аппаратуры разработаны ультрапрецизионные генераторы, которые имеют выдающиеся характеристики по стабильности и не менее выдающуюся стоимость.
Еще одно из направлений в разработке кварцевых генераторов — так называемые программируемые генераторы. Суть в следующем: часто производители имеют в своей номенклатуре сотни позиций с различными значениями тактовых частот, но все равно всвязи с появлением новых разработок есть потребность в том, чтобы расширять линейку продуктов, и все это требует ресурсов и времени. А если появляется какая-либо новая разработка и необходимо срочно ее внедрять
, то тут-то можно и воспользоваться программируемым осциллятором. Не менее эффективно их использовать в качестве генераторов на нестандартные частоты в малых партиях приборов. Такие компоненты выпускает, например, фирма Epson. Так, серия SG-8002CA может работать с частотами от 1 до 125 МГц при типовом значении стабильности 50 ррm (рис.2).
Рис. 2 Кварцевый генератор
Следующий виток эволюции — еще более интересное устройство VCXO со схемой умножения частоты для работы на более высоких частотах, нежели стандартный потолок для подобного рода приборов (125 МГц). Например, очень интересный генератор MLO80100 выпускает фирма M/A-COM, входящая в концерн Tyco Electronics. Этот прибор может работать на частотах 920–950МГц, перестраиваясь в этом диапазоне при температурном дрейфе всего 0,06МГц/°С. Прибор выпускается в виде гибридного экранированного модуля под бескорпусный монтаж (рис.3).
Рис. 3 Кварцевый генератор
Устройство позиционируется производителем как эффективное решение для систем связи и телеметрии. Эта же компания производит синтезаторы частоты, по сути дела являющиеся гипертрофированными VCXO (рис.4). Они содержат схему стабилизированного генератора, устройство умножения частоты с программируемым коэффициентом умножения, несколько петель обратной связи для калибровки и устройство управления генерацией. Типичный представитель таких устройств — синтезатор частоты для CDMA базовых станций MLS9203-01815 счастотным диапазоном работы 1780–1850МГц. Он имеет шаг перестройки частоты всего 50кГц (рис. 5). У фирмы M/A-COM есть целая линейка подобного рода приборов для работы в составе различных высокочастотных устройств: абонентских базовых станций, беспроводных сетей, систем навигации и т.п. Частотный диапазон работы компонентов лежит в интервале от 30 МГц до 2,5 ГГц. Более подробно схемотехнику и особенности этих элементов мы предполагаем описать вотдельной статье.
Рис. 4
Рис. 5
Виды кварцевых генераторов
На практике шире всего распространены два вида кварцевых генераторов:
а) генераторы, в которых кварцевый резонатор является частью колебательного контура и эквивалентен индуктивности;
б) генераторы, в которых кварцевый резонатор включен в цепь обратной связи, используется как узкополосный фильтр и эквивалентен активному сопротивлению.
Кварцевые генераторы, в которых кварцевый резонатор используется в качестве элемента контура с индуктивной реакций, называют осцилляторными, а генераторы, в которых кварцевый резонатор включен в цепь обратной связи, называют генераторами последовательного резонанса.
Осцилляторная схема кварцевого генератора с кварцем между коллектором и базой, выполненная по схеме с заземленным эмиттером (емкостная трехточка) приведена на рис.6.
Puc.6
В настоящее время емкостная трехточка находит широкое применение в диапазоне частот до 22 МГц при работе резонатора на основной частоте, и до 66 МГц при возбуждении на третьей механической гармонике (рис.7). Автогенератор с кварцевым резонатором между коллектором и базой в схеме с заземленным по высокой частоте эмиттером, не склонен к паразитным колебаниям на ангармонических обертонах, имеет превосходную стабильность частоты при изменении питающего напряжения и температуры окружающей среды.
Puc.7
Влияние изменений реактивных параметров транзистора, зависящих от напряжения питания и времени, ослабляется с ростом емкостей С1, СЗ (рис.6), т. е. с приближением рабочей частоты автогенератора к Fg. Однако чрезмерное увеличение емкостей приводит к ухудшению условий самовозбуждения. С другой стороны, с увеличением емкостей растет рассеиваемая на резонаторе мощность, что ведет к увеличению нестабильности генерируемой частоты. По техническим условиям рассеиваемая мощность на кварце ограничена 1...2 мВт. Однако в диапазоне частот 1...22 МГц при такой рассеиваемой мощности частота последовательного резонанса зависит от рассеиваемой мощности, а коэффициент пропорциональности составляет (0,5...2) •10-9 Гц/мкВт, поэтому для высокостабильных генераторов рассеиваемую мощность на резонаторе следует ограничить величиной 0,1...0,2 мВт.
На практике рекомендуется выбирать емкости С1, СЗ так, чтобы частота генерации отстояла от Fs не более чем на четверть резонансного интервала. При возбуждении кварцевого резонатора на нечетных механических гармониках кварца, вместо резистора R3 включают катушку индуктивности Lк (рис.7). На частоте генерации контур Lк-С4 должен иметь емкостное сопротивление, т. е. его резонансная частота должна быть ниже частоты генерации. Параметры контура следует выбирать так, чтобы его собственная частота составляла 0,7...0,8 от частоты генерации. В результате контур имеет емкостную проводимость на частоте необходимой гармоники, что исключает возможность генерации на низших гармониках и основной частоте.