Файл: Федеральное государственное образовательное бюджетное учреждение.docx

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 12.01.2024

Просмотров: 609

Скачиваний: 11

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

СОДЕРЖАНИЕ

Федеральное государственное образовательное бюджетное учреждение

высшего образования

«Поволжский государственный университет телекоммуникаций и информатики»

КОЛЛЕДЖ СВЯЗИ

Часть 1 Основные методы обеспечения качества функционирования……………………4

Тема 1.1 Многоуровневая модель качества ПО..............................................................................4

Тема 1.2 Объекты уязвимости...........................................................................................................7

Тема 1.3 Дестабилизирующие факторы и угрозы надежности....................................................11

Тема 1.4 Методы предотвращения угроз надежности..................................................................13

Тема 1.5 Оперативные методы повышения надежности ............................................................ 14

Тема 1.6 Первичные ошибки, вторичные ошибки и их проявление...........................................15

Тема 1.7 Математические модели описания статистических характеристик ошибок..............16

Тема 1.8 Анализ рисков и характеристик качества программного обеспечения ….…………19

Тема 1.9 Целесообразность разработки модулей адаптации ......................................................23

Часть 1. Основные методы обеспечения качества функционирования

Тема 1.1 Многоуровневая модель качества ПО

Разработка оптимальной стратегии защиты ПО



В этом алгоритме входные 64-битовые векторы, называемые блоками открытого текста, преобразуются в выходные 64-битовые векторы, называемые блоками шифротекста, с помощью двоичного 56-битового ключа К. Число различных ключей DES-алгоритма равно 256 > 7 • 1016.

Алгоритм обеспечивает высокую стойкость, однако недавние результаты показали, что современная технология позволяет создать вычислительное устройство стоимостью около 1 млн долларов США, способное вскрыть секретный ключ с помощью полного перебора в среднем за 3,5 часа.

Из-за небольшого размера ключа было принято решение использовать DES-алгоритм для закрытия коммерческой (несекретной) информации. Практическая реализация перебора всех ключей в данных условиях экономически нецелесообразна, так как затраты на реализацию перебора не соответствуют ценности информации, закрываемой шифром.

DES-алгоритм явился первым примером широкого производства и внедрения технических средств в области защиты информации. Национальное бюро стандартов США проводит проверку аппаратных реализаций DES-алгоритма, предложенных фирмами-разработчиками, на специальном тестирующем стенде. Только после положительных результатов проверки производитель получает от Национального бюро стандартов сертификат на право реализации своего продукта. К настоящему времени аттестовано несколько десятков изделий, выполненных на различной элементной базе.

Достигнута высокая скорость шифрования. По некоторым сообщениям, имеется микросхема, реализующая DES-алгоритм со скоростью 45 Мбит/с. Велика доступность этих изделий: стоимость некоторых аппаратных реализаций ниже 100 долларов США.

Основные области применения DES-алгоритма:

1) хранение данных в ЭВМ (шифрование файлов, паролей);

2) аутентификация сообщений (имея сообщение и контрольную группу, несложно убедиться в подлинности сообщения);

3) электронная система платежей (при операциях с широкой клиентурой и между банками);

4) электронный обмен коммерческой информацией (обмен данными между покупателем, продавцом и банкиром защищен от изменений и перехвата).

ГОСТ 28147-89

В 1989 году в СССР был разработан блочный шифр для использования в качестве государственного стандарта шифрования данных. Разработка была принята и зарегистрирована 
как ГОСТ 28147—89. И хотя масштабы применения этого алгоритма шифрования до сих пор уточняются, начало его внедрению, в частности в банковской системе, уже положено. Алгоритм, судя по публикациям, несколько медлителен, но обладает весьма высокой стойкостью.

Блок-схема алгоритма ГОСТ отличается от блок-схемы DES-алгоритма лишь отсутствием начальной перестановки и числом циклов шифрования (32 в ГОСТе против 16 в DES-алгоритме).

В шифре ГОСТ используется 256-битовый ключ и объем ключевого пространства составляет 2256. Ни на одной из существующих в настоящее время или предполагаемых к реализации в недалеком будущем ЭВМ общего применения нельзя подобрать ключ за время, меньшее многих сотен лет. Российский стандарт проектировался с большим запасом, по стойкости он на много порядков превосходит американский стандарт DES с его реальным размером ключа в 56 бит и объемом ключевого пространства всего 256. В свете прогресса современных вычислительных средств этого явно недостаточно. В этой связи DES может представлять скорее исследовательский или научный, чем практический интерес.

Алгоритм расшифровки отличается от алгоритма зашифровки тем, что последовательность ключевых векторов используется в обратном порядке.

Расшифровка данных возможна только при наличии синхропосылки, которая в скрытом виде хранится в памяти ЭВМ или передается по каналам связи вместе с зашифрованными данными.

Важной составной частью шифросистемы является ключевая система шифра. Под ней обычно понимается описание всех видов ключей (долговременные, суточные, сеансовые и др.), используемых шифром, и алгоритмы их использования (протоколы шифрованной связи).

В электронных шифраторах в качестве ключей могут использоваться начальные состояния элементов памяти в схемах, реализующих алгоритм шифрования, функциональные элементы алгоритма шифрования. Ключ может состоять из нескольких ключевых составляющих различных типов: долговременных, сеансовых и т. д.

Одной из основных характеристик ключа является его размер, определяющий число всевозможных ключевых установок шифра. Если размер ключа недостаточно велик, то шифр может быль вскрыт простым перебором всех вариантов ключей. Если размер ключа чрезмерно велик, то это приводит к удорожанию изготовления ключей

, усложнению процедуры установки ключа, понижению надежности работы шифрующего устройства и т. д. Таким образом, выбранный криптографом размер ключа — это всегда некий компромисс.

Заметим, что DES-алгоритм подвергался критике именно в связи с небольшим размером ключа, из-за чего многие криптологи пришли к мнению, что необходимым «запасом прочности» DES-алгоритм не обладает.

Другой важной характеристикой ключа является его случайность.

Наличие закономерностей в ключе приводит к неявному уменьшению его размера и, следовательно, к понижению криптографической стойкости шифра. Такого рода ослабление криптографических свойств шифра происходит, например, когда ключевое слово устанавливается по ассоциации с какими-либо именами, датами, терминами. Всякая логика в выборе ключа наносит ущерб криптографическим свойствам шифра.

Таким образом, требование случайности ключей выступает как одно из основных при их изготовлении.

Для изготовления ключей могут использоваться физические датчики и псевдослучайные генераторы со сложным законом образования ключа. Использование хорошего физического датчика более привлекательно с точки зрения обеспечения случайности ключей, но является, как правило, более дорогим и менее производительным способом. Псевдослучайные генераторы более дешевы и производительны, но привносят некоторые зависимости если не в отдельные ключи, то в совокупности ключей, что также нежелательно.

Важной частью практической работы с ключами является обеспечение секретности ключа. К основным мерам по защите ключей относятся следующие:

1) ограничение круга лиц, допущенных к работе с ключами;

2) регламентация рассылки, хранения и уничтожения ключей;

3) регламентация порядка смены ключей;

4) применение технических мер защиты ключевой информации от несанкционированного доступа.

Важной составляющей защиты информации являются протоколы связи, определяющие порядок вхождения в связь, зашифровки и передачи информации. Протокол связи должен быть построен с учетом следующих обстоятельств:

1) протокол должен защищать открытый текст и ключ от несанкционированного доступа на всех этапах передачи информации от источника к получателю сообщений;


2) протокол не должен допускать выхода в линии связи «лишней» информации, предоставляющей криптоаналитику противника дополнительные возможности дешифрования криптограмм.

Нетрудно видеть, что использование криптосистем с секретным ключом предполагает заблаговременные до сеансов связи договоренности между абонентами о сеансовых секретных ключах или их предварительную пересылку по защищенному каналу связи. К настоящему времени разработаны принципы так называемого открытого распределения ключей (ОРК) и открытого шифрования (ОШ), которые явились «новыми направлениями в криптографии», давшими начало криптографии с открытым ключом.

Список использованных источников:


  1. Вендеров А.М. Проектирование информационных систем: учебник и практикум для СПО, М., «Юрайт», 2016

  2. Граничин Олег Безопасность информационных систем, http://www.intuit.ru/studies/courses/13845/1242/info

  3. В.Г.Олифер, Н.А.Олифер - Компьютерные сети, http://www.ecolan.ru/build_infr/structured_cabling/

  4. С. Клименко, В. Уразметов. "Internet. Среда обитания информационного общества", http://festival.1september.ru/articles/531976/

  5. https://studopedia.ru/17_22530_obespechenie-kachestva-funktsionirovaniya-sistem-upravleniya.html

  6. http://www.chebgym5.ru/inf/p29aa1.html -Арифметические основы ПК