ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 20.04.2024
Просмотров: 414
Скачиваний: 0
Компьютерное моделирование
кумов, лицеев, колледжей, студентам не физических специальностей, лицам, самостоятельно изучающим физику, а также абитуриентам и преподавателям. Учебный компьютерный курс "Открытая физика1.0, часть I" содержит в виде отдельных модулей 36 интерактивных компьютерных моделей, которые позволяют наблюдать на экране компьютера симуляции физических экспериментов, 11 видеозаписей натурных экспериментов и 1 час звуковых пояснений в виде фрагментов лекций, которые читает научный руководитель проекта С. М. Козел. Компьютерные модели позволяют пользователю управлять поведением объектов на экране монитора, изменяя начальные условия экспериментов, и проводить разнообразные физические опыты. Некоторые модели позволяют наблюдать на экране монитора, одновременно с ходом эксперимента, построение графических зависимостей от времени ряда физических величин, описывающих эксперимент. Видеозаписи натурных экспериментов делают курс более привлекательным и позволяют сделать занятия живыми и интересными. Особо подчеркнѐм, что к каждой компьютерной модели и к каждому видеофрагменту даны пояснения физики наблюдаемых экспериментов и явлений. Эти пояснения можно не только прочитать на экране дисплея и при необходимости распечатать, но и прослушать, если ваш компьютер укомплектован звуковой картой.
Компьютерный курс назван "Открытой физикой", так как его модульный состав даѐт большую свободу в выборе компьютерных моделей и соответствующих экспериментов. В дальнейшем предполагается разработка открытых версий на основе новейших компьютерных технологий. Это позволит создавать открытые образовательные продукты для сети Internet и дистанционного образования. В перспективе учитель сможет менять наполнение курса в зависимости от своих целей, создавать собственные пояснения и задания к компьютерным моделям, сохранять начальные условия запланированных экспериментов, вводить в курс новые задачи и вопросы.
Технические требования: Windows 3.1X/95/NT, 386SX, 4 MB ОЗУ, 4 скоростной CD-ROM, 5MB жѐсткого диска, звуковая карта, монитор SVGA 800*600, 16 цветов (рекомендуется 64К).При использовании моделей компьютер предоставляет уникальную, не реализуемую в реальном физическом эксперименте, возможность визуализации не реального явления природы, а его упрощѐнной теоретической модели с поэтапным включением в рассмотрение дополнительных усложняющих факторов, постепенно приближающих эту модель к реальному явлению. Кроме того, не секрет, что возможности организации массового выполнения разнообразных лабораторных работ, причѐм на современном уровне, в средней школе весьма ограничены по причине слабой оснащѐнности кабинетов физики. В этом случае работа учащихся с компьютерными моделями также чрезвычайно полезна, так как компьютерное моделирование позволяет создать на экране компьютера живую, запоминающуюся динамическую картину физических опытов или явлений.
В то же время использование компьютерного моделирования не должно рассматриваться в качестве попытки подменить реальные физические эксперименты
155
Тарова Инна Николаевна
их симуляциями, так как число изучаемых в школе физических явлений, не охваченных реальными демонстрациями, даже при блестящем оснащении кабинета физики, очень велико. Несколько условный характер отображения результатов компьютерного моделирования можно компенсировать демонстрацией видеозаписей натурных экспериментов, которые дают адекватное представление о реальном протекании физических явлений.
Значительное число компьютерных моделей, достаточно полно охватывающих такие разделы физики, как механика, молекулярная физика и термодинамика, содержится в первой части мультимедийного компьютерного курса "Открытая физика 1.0". Некоторые модели курса позволяют одновременно с ходом эксперимента наблюдать в динамическом режиме построение графических зависимостей от времени ряда физических величин, описывающих эксперимент. Подобные модели представляют особую ценность, так как учащиеся, как правило, испытывают значительные трудности при построении и чтении графиков.
Компьютерные модели курса "Открытая физика 1.0" легко вписываются в традиционный урок и позволяют учителю организовывать новые, нетрадиционные виды учебной деятельности учащихся. Приведѐм в качестве примеров два вида такой деятельности, опробованные нами на практике:
Урок - исследование. Учащимся предлагается самостоятельно провести небольшое исследование, используя компьютерную модель, и получить необходимые результаты. Тем более, что многие модели позволяют буквально за считанные минуты провести такое исследование. В этом случае урок приближается к идеалу, так как ученики получают знания в процессе самостоятельной творческой работы, ибо знания необходимы им для получения конкретного, видимого на экране компьютера, результата. Учитель в этом случае является лишь помощником в творческом процессе овладевания знаниями. Разумеется, такой урок можно провести только в компьютерном классе.
Урок решения задач с последующей компьютерной проверкой. Учитель предла-
гает учащимся для самостоятельного решения в классе или в качестве домашнего задания задачи, правильность решения которых они могут проверить, поставив затем компьютерные эксперименты. Возможность самостоятельной последующей проверки в компьютерном эксперименте полученных результатов усиливает познавательный интерес, делает работу учащихся творческой, а зачастую приближает еѐ по характеру к научному исследованию. В результате многие учащиеся начинают придумывать свои задачи, решать их, а затем проверять правильность своих рассуждений, используя компьютерные модели. Учитель может сознательно побуждать учащихся к подобной деятельности, не опасаясь, что ему придѐтся решать IворохI придуманных учащимися задач, на что обычно не хватает времени. Ведь для проверки правильности полученного ответа достаточно провести компьютерный эксперимент, что занимает обычно меньше одной минуты, к тому же такие эксперименты проводят сами учащиеся. Более того, составленные школьниками
156
Компьютерное моделирование
задачи можно использовать в классной работе или предложить остальным учащимся для самостоятельной проработки в виде домашнего задания. Авторы задач при этом могут стать активными помощниками учителя, помогая однокласникам решать свои авторские задачи, а также проверяя работы и выставляя оценки.
Необходимо отметить, что сильно усложняет работу с компьютерным курсом "Открытая физика 1.0" ограниченное число задач и вопросов, которыми авторы сопровождают модели. Опыт работы показывает, что каждая модель должна сопровождаться, по крайней мере, десятком задач различной сложности, тогда работа с курсом даст действительно высокий учебный эффект. Было бы идеально, если бы к компьютерному курсу прилагался задачник с вопросами и задачами, содержание которых было бы согласовано с функциональными возможностями моделей. Наличие такого задачника существенно упростило бы работу учителя по использованию данного курса на уроках физики и позволило бы активно рекомендовать его учащимся для домашней работы.
Тем не менее, даже на сегодняшний день, компьютерный курс "Открытая физика 1.0", безусловно, является чрезвычайно полезным при изучении физики, как в классе, так и при индивидуальной работе. А вот как эффективно использовать этот курс на уроках, а также как составлять задания к компьютерным моделям и формировать из них лабораторные работы, мы рассмотрим в следующей главе.
Итак, подведѐм итоги. Можно ли преподавать физику с использованием компьютерных моделей? Разумеется, да. Более того, роль компьютерного моделирования в учебном процессе будет повышаться по мере появления новых компьютерных программ. Однако, качественный скачок в этой области будет возможен только тогда, когда разработчики компьютерных программ осознают, что для получения действительно эффективных программ им необходим тесный контакт с учителями, которые хорошо знакомы с компьютерными технологиями и активно используют эти технологии при работе с учащимися. Прежде всего, чрезвычайно удобно использовать компьютерные модели курса "Открытая физика 1.0" в демонстрационном варианте при объяснении нового материала или при решении задач. Согласитесь, что гораздо проще и нагляднее показать, как тело движется при наличии положительной начальной скорости и отрицательного ускорения, используя модель "Движение с постоянным ускорением", чем объяснять это при помощи доски и мела. Ведь на экране компьютера кроме движущегося спортсмена, который в соответствии с заданными начальными условиями тормозит, разворачивается, а затем набирает скорость в противоположном направлении, ещѐ и, соответственно, изменяется длина и направление вектора его скорости, а также в динамическом режиме на экран выводятся графики координаты, пути и проекции скорости. Какими ещѐ средствами можно обеспечить описанную выше демонстрацию?
Конечно, подобные демонстрации будут иметь успех, если учитель работает с небольшой группой учащихся, которых можно рассадить вблизи монитора компьютера или, если в кабинете имеется проекционная техника, позволяющая отобра-
157
Тарова Инна Николаевна
зить экран компьютера на стенной экран большого размера. В противном случае учитель может предложить учащимся самостоятельно поработать с моделями в компьютерном классе или в домашних условиях, что иногда бывает более реально.
Следует отметить, что при индивидуальной работе учащиеся с большим интересом "возятся" с предложенными моделями, пробуют все регулировки, к сожалению, не особенно вникая в физическое содержание происходящего на экране. Практический опыт показывает, что обычному школьнику конкретная модель может быть интересна в течении 3 -5 минут в зависимости от еѐ красочности и сложности, а затем неизбежно возникает вопрос: "А что делать дальше?" Опросы, которые проводил автор после такой "самостоятельной работы", показали, что учебный эффект незначителен, так как учащиеся такую деятельность воспринимают не более чем развлечение.
Что же делать, чтобы урок в компьютерном классе был не только интересен по форме, но и дал максимальный учебный эффект?
Учителю необходимо заранее подготовить план работы с выбранной для изучения компьютерной моделью, сформулировать вопросы и задачи, согласованные с функциональными возможностями модели, а также желательно предупредить учащихся, что им в конце урока будет необходимо ответить на вопросы (вопросы также необходимо подготовить заранее) или написать небольшой отчѐт о проделанной работе. Идеальным является вариант, при котором учитель в начале урока раздаѐт учащимся индивидуальные задания и контрольные вопросы в распечатанном виде.
Какие же виды заданий и учебной деятельности можно предложить учащимся при работе с компьютерными моделями и как организовать эту деятельность?
В процессе преподавания с использованием компьютерного курса "Открытая физика 1,0" были разработаны следующие виды заданий для учащихся:
Ознакомительное задание. Это задание предназначено для того, чтобы помочь учащемуся осознать назначение модели и освоить еѐ регулировки. Задание содержит инструкции по управлению моделью и контрольные вопросы. При выполнении этого задания учащимися, учитель в компьютерном классе, переходя от ученика к ученику, помогает им освоить модель, поясняя наиболее сложные моменты и задавая вопросы, при ответе на которые учащиеся вникают в суть происходящего на экране.
Компьютерные эксперименты. После того как компьютерная модель освоена в первом приближении, имеет смысл предложить учащимся выполнить 1 - 2 компьютерных эксперимента. Такие эксперименты позволяют учащимся научиться уверенно управлять происходящем на экране и глубже вникнуть в смысл демонстраций.
Экспериментальные задачи. Далее, если модель позволяет, можно предложить учащимся экспериментальные задачи, то есть задачи, для решения которых необходимо продумать и поставить соответствующий компьютерный эксперимент. Как
158
Компьютерное моделирование
правило, учащиеся с особым энтузиазмом берутся за решение таких задач. Несмотря на кажущуюся простоту, такие задачи очень полезны, так как позволяют учащимся увидеть живую связь компьютерного эксперимента и физики изучаемых явлений.
Расчѐтные задачи с последующей компьютерной проверкой. На данном этапе,
когда учащиеся уже достаточно хорошо овладели моделью и углубили свои знания по изучаемому явлению, им можно предложить 2 - 3 задачи, которые вначале необходимо решить без использования компьютера (некоторых учеников даже необходимо отсадить подальше от компьютера), а затем проверить полученный ответ, поставив компьютерный эксперимент. При составлении таких задач необходимо учитывать как функциональные возможности модели, так и диапазоны изменения числовых параметров. Следует отметить, что, если эти задачи решаются в компьютерном классе, то время, отведѐнное на решение любой задачи, не должно превышать 5 -8 минут. В противном случае, использование компьютера становится мало эффективным. Задачи, требующие более длительного решения, имеет смысл предложить учащимся для предварительной проработки в виде домашнего задания и/или обсудить эти задачи на обычном уроке в кабинете физики, и только после этого использовать их в компьютерном классе.
Заметим, что в качестве задач с последующей компьютерной проверкой предпочтительнее, так называемые, обратные задачи, так как ответы к прямым задачам некоторые учащиеся предпочитают получать, установив значения числовых параметров модели в соответствии с условием задачи и поставив эксперимент. После получения ответа решать задачу им, как правило, уже неинтересно. Разумеется, и обратную задачу учащиеся могут пытаться "решать" экспериментальным путѐм, подбирая числовые значения параметров и ставя эксперименты. Однако, это занятие более длительное и не столь привлекательное, так как требует значительного количества однотипных экспериментов и не всегда приводит к нужному результату. В то же время, если задача на бумаге решена правильно и первый же эксперимент согласуется с ответом, учащиеся получают моральное удовлетворение гораздо большее, чем от ответа, полученного обманным путѐм. По указанной причине прямые задачи лучше давать в виде экспериментальных заданий.
Неоднозначные задачи. В рамках этого задания учащимся предлагается решить задачи, в которых необходимо определить величины двух зависимых параметров, например, в случае бросания тела под углом к горизонту, начальную скорость и угол броска, для того чтобы тело пролетело заданное расстояние. При решении такой задачи учащийся должен вначале самостоятельно выбрать величину одного из параметров с учѐтом диапазона, заданного авторами модели, а затем решить задачу, чтобы найти величину второго параметра, и только после этого поставить компьютерный эксперимент для проверки полученного ответа. Понятно, что такие задачи имеют множество решений.
159