ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 537
Скачиваний: 0
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
60 |
От прокариот к эукариотам
Жизнь у прокариот хлопотная. Эти проворные маленькие существа должны обладать отменной реакцией. Как только появляется пища, они должны ее переварить, чтобы успеть вырасти. Система управления наподобие lасоперона хорошо приспособлена к быстрым действиям, когда нужно установить требуемый уровень ферментов в соответствии с быстро меняющейся средой.
Положение с эукариотами совершенно иное. Большинство многоклеточных организмов развивалось таким образом, что их внутренние клетки оказались отрезанными от меняющейся внешней среды. Стабильная внутренняя обстановка — гомеостаз — необходима для надежной работы многоклеточных организмов. В итоге генные механизмы управления у эукариот оказались в большей степени рассчита-
110
ны на регуляцию организма в целом. Например, некоторые гены активируются лишь однажды и вызывают необратимые действия по сравнению с полностью обратимым механизмом laс-оперона. У многих животных неспециализированные, так называемые стволовые клетки развиваются очень рано, еще у зародыша. Они превращаются в специализированные клетки, вроде клеток мозга или ногтей, следуя определенному генетическому образцу, который может в итоге привести даже к смерти клетки. Такая специализация клеток порождает все большее число ДНК, РНК и белковых ферментов, так что эукариоты могут совмещать в своем метаболизме тонкие взаимодействия между этими молекулами.
Модельные организмы
Излюбленный объект исследования среди эукариот — Saccharomyces accharomyces cerevisae (S. cerevisae),
больше известный как пивные дрожжи. Пожалуй, это более всего изученный на молекулярном и клеточном уровнях эукариотный организм. S. cerevisae представляет собой всего лишь одноклеточный грибок, но многие процессы в его клеточном ядре сходны с теми же процессами у млекопитающих. Действительно, исследование дрожжей помогло выявить многие молекулы и химические реакции, задействованные в процессах, ход которых нарушается при раке. S. cerevisae устроены сложнее бактерии, чье ДНК, содержащее около 12 млн нуклеотидных пар азотистых основания, имеет 6 тыс. генов. И Е. coli, и S. cerevisae считаются модельными организмами, которые должны:
1)быстро развиваться, имея короткий срок жизни;
2)обладать малыми размерами, будучи взрослыми;
3)быть всегда под рукой;
4)быть простыми в обращении;
5)выполнять свои биологические функции сходным с более сложными организмами, вроде человека, образом.
111
Усердно изучаются и другие модельные организмы. Caenorhabditis elegans — прозрачный круглый червь, вырастающий в длину не более 1 мм, вполовину величины вот этого знака ~. С. elegans достигает взрослого состояния за три дня, живет в почве по всему свету и питается микробами вроде тех, что обитают в перегное.
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
61 |
Этот маленький червь представляет собой многоклеточную (959 клеток) эукариоту с 19 099 генами в состоящей из 97 млн пар азотистых оснований ДНК. Он развивается из одной клетки в организм с нервной системой и «мозгом». С. elegans способен к обучению, вырабатывает яйцеклетки и сперматозоиды, постепенно стареет и умирает. Сидни Бреннер, молекулярный биолог из Великобритании, говорит, что С. elegans оправдывает свое название, ибо на самом деле «фотогеничен», как видно на рис. 4.5. Бреннер, Джон Салстон и Роберт Хорвиц разделили Нобелевскую премию 2002 года по физиологии и медицине как раз за работу с червем С. elegans.
Другой модельный организм, Drosophila melanogaster, знаком многим из нас. В 1906 году гарвардский профессор эмбриологии Уильям Эрнест Касл привлек к участию в одном
Рис. 4.5. С. elegans
112
проекте аспиранта [Крейга Вудворта]. Он попросил его не убирать несколько перезрелых виноградин, а затем посмотреть, что получится. Получились D. melanogaster— плодовые мушки — организм, изучаемый ныне в лабораториях по всему миру. Благодаря своим идеальным свойствам модельного организма плодовые мушки широко используются в исследованиях по генетике и биологии развития.
Жизненный цикл плодовой мушки составляет 16 дней, а новое поколение она дает каждые 12 часов. Эти существа плодовиты, непритязательны и, по словам генетика из Беркли Герри Рубин, имеют столь много общего
счеловеком, что их называют крохотными людьми с крыльями. Дрозофила располагает 13 600 генами на ДНК из 165 млн нуклеотидных пар азотистых оснований. Весь этот молекулярный аппарат умещается в тельце длиной 3 мм, величиной примерно с букву V в имени Venter (о самом Вентере чуть позже).
Mus mesculus (мышь), давний любимец медиков, занимающихся изучением болезней и лекарств, тоже соответствует всем требованиям, предъявляемым к модельным организмам. К тому же геном мыши весьма схож
сгеномом чело-
113
века. Генетические сравнительные исследования уже многое прояснили в отношении строения и функционирования человеческого тела. Дальнейшие исследования принесут дополнительные сведения.
Другие создания, вроде полосатой перцины, иглобрюха [родственного горчице сорняка из семейства крестоцветных], резушки Таля (Arabidopsis thaliana) и палочки Пфайфера (Haemophilus influenzae), выступают в роли модельных организмов и изучены в разной степени. Модельные организмы и приспособления, требуемые
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
62 |
для их изучения, вызывают в памяти ситуации из классической описательной биологии с образами бесчисленных исследователей, склонившихся над микроскопом или щурящихся сквозь стекла очков во время поездок по экзотическим местам, где можно увидеть организмы в их естественной среде обитания (вспомним Чарльза Дарвина на Галапагосских островах).
Физика — биология — химия
Несмотря на значимость модельных организмов для биологов, поле деятельности современной биологии значительно расширилось во многом благодаря нахлынувшим туда представителям других отраслей знаний, чья деятельность преобразила сам подход к изучению биологии.
Чтобы понять, как произошло это преображение, взглянем иначе и шире на центральное учение молекулярной биологии. Описательная биология сосредоточивалась на видимых признаках, но находила мало объяснений, связанных с этими признаками молекулярных механизмов. Затем пришел черед химии, занимавшейся химическими реакциями внутри живых существ, прояснявшими биологические процессы. Но главная трудность состояла в том, что управляющие живыми системами молекулы были слишком малы, чтобы их можно было для разглядывать в микроскоп.
Следующими нахлынули физики, посредством рентгеновской кристаллографии выявившие двойную спираль ДНК
114
(вспомним биолога Джеймса Уотсона и физика Фрэнсиса Крика, воспользовавшихся данными рентгеновского кристаллографа Розалинды Франклин). Итак, хорошие вести заключались в создании представления об общем строении ДНК, а плохие — в невозможности разглядеть подробности ее строения из-за малых размеров. ДНК содержит такое огромное количество парных оснований нуклеотидов, что их определение и выписывание оказалось сложной задачей.
Итак, положение биологии в 1980-е годы было следующим: молекулярная биология сосредоточилась на работе с крайне малыми объектами; классическая описательная биология ограничилась наблюдением той части биосферы, которая была доступна зрению, пусть и сквозь окуляр микроскопа. Многие детали на стыке микро- и макроскопических областей биологии оказались совершенно необъяснимыми (рис. 4.6).
Рис. 4.6. Общая картина биологии
115
Переход от большого масштаба к малому происходил медленно. Изучение молекул с химической точки зрения кое-что проясняло, но продвижение шло черепашьим шагом, а черепаха, увы, не модельный организм.
В середине 1980-х годов некоторых биологов осенило: почему бы не изучить весь состав ДНК живого организма, так называемый геном? Более того, посредством отдельных модельных организмов прийти к конечной цели — геному человека. Это привело к очередному наплыву в биологию приборостроителей, программистов, предпринимателей и появлению одного неуемного исследователя — Дж. Крейга Вентера.
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).