ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 532
Скачиваний: 0
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
118 |
Список идей
Многие идеи, о которых повествует наша книга, рассматриваются лишь в той мере, в какой они связаны с крупнейшими, не решенными наукой задачами. Однако читателям, возможно, хочется получить более подробные сведения. Данный раздел позволит углубить представления о затронутых вскользь темах. Темы расположены в порядке их появления на страницах книги, и при этом даются ссылки на источники, если вы пожелаете расширить свой кругозор. Дополнительные сведения содержатся в разделе «Источники для углубленного изучения».
Надеемся, что эти идеи смогут удовлетворить ваше любопытство или даже разжечь его. В будущем удастся решить некоторые из этих проблем, но им на смену придут другие.
1. Антивещество
Почти каждой элементарной частице соответствует античастица. Как правило, античастицы обладают той же массой, что и их обычный собрат с зарядом одинаковой величины, только противоположного знака. Как видно на рис. I.1, каждому кварку соответствует свой антикварк (антиверхний, антиочарованный...), каждому лептону — свой антилептон
236
Рис. I.1. Основные частицы
(антиэлектронное нейтрино, антимюонное нейтрино...), а W+- и W--бозону — свои античастицы. Лишь у фотона, Z-бозона, глюона (всего восемь разновидностей) и гипотетического гравитона нет античастиц. Иначе говоря, они сами служат для себя античастицами.
Как упоминалось в гл. 2, антивещество было предсказано теорией, когда в 1928 году британский физик П. А. М. Дирак объединил квантовую механику со специальной теорией относительности. Сходным, но более простым примером здесь могут послужить решения уравнения х2 = 9, равные +3 и —3. Зачастую при наличии у уравнения двух решений одно обычно отбрасывают, считая не имеющим физического смысла. Ученые пытались исключить решение уравнения Дирака, допускавшее существование подобной электрону частицы, но несущей положительный, а не отрицательный заряд. Но спустя четыре года [1932] американский физик Карл Андерсон представил опытные свидетельства существования позитрона при исследовании космических лучей, так что предсказание подтвердилось. В 1955 году в Калифорнийском уни-
237
верситете Эмилио Сегре и Оуэн Чемберлен наблюдали антипротон, а антинейтрон обнаружился годом позже. Событие, сотворившее электрон и позитрон в диффузионной камере у Андерсона в 1932 году, именуют рождением пар. Световой фотон в космических лучах отдает всю свою энергию, которая превращается в массу в соответствии с уравнением Эйнштейна Е = тс2. При столкновении электрона с позитроном их масса полностью переходит в энергию, так что в итоге два световых фотона разлетаются в противоположные стороны. Данный процесс называют аннигиляцией, и он состоит в превращении массы в энергию, величина которой вновь
определяется уравнением Эйнштейна.
Теоретически ничто не может помешать антипротонам соединиться с антинейтронами для образования антиядер, а антиэлектронам примкнуть к этим антиядрам с образованием антиатомов. И действительно, в 1995 году в Европейской лаборатории физики элементарных частиц возглавляемому немецким физиком Вальтером Олертом коллективу ученых удалось получить девять атомов антиводорода. Только не подумайте, что эти антиатомы устроили переполох в лаборатории. Ввиду подавляющего перевеса обычного вещества девять атомов антиводорода не продержались и сорок миллиардных секунды.
Научная фантастика привлекает огромное количество антивещества, особенно в качестве топлива для
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
119 |
космических кораблей. Наибольшая трудность в создании движителя на основе антивещества сопряжена с его хранением и радиоактивным загрязнением. Как бы ни бились инженеры над созданием космических кораблей, работающих на основе антивещества, встает вопрос о безопасности, поскольку один грамм аннигилирующего вещества (антивещества) выделяет энергию, сравнимую с энергией сброшенной в 1945 году на Японию атомной бомбы.
Не существуют ли где-то в далекой галактике или даже в Млечном Пути залежи антивещества? В конце концов, если
238
бы единственной связью с этими галактиками для нас служили излучаемые ими световые фотоны, мы оставались бы в неведении. Фотон — сам себе античастица, так что мы не могли бы отличить обыкновенные галактики от галактик из антивещества, поскольку от тех и других исходили бы фотоны. Все это верно, однако постоянно обрушивающиеся на нас космические лучи содержат не одни фотоны, только никакого неведомого антивещества там нет. Кроме того, в случае протон-антипротонной аннигиляции на краю антигалактики излучался бы свет определенной частоты. Такого света пока не наблюдалось. Похоже, что Вселенная почти целиком состоит из обычного вещества.
Однако отсутствие антивещества порождает другую трудность. Если населяемая нами Вселенная симметрична, то при «большом взрыве» должно было появиться одинаковое количество вещества и антивещества, и они бы полностью взаимно уничтожились. Некому тогда было бы обсуждать этот вопрос. Куда же делось антивещество? Согласно одной теории, возникла антивселенная, которая где-то затерялась, возможно на одной из «бран» из М-теории (см. гл. 2).
Недавние опыты указывают на асимметрию в скорости распада некоторых видов вещества и антивещества. Мезоны, двухкварковые частицы, нестабильны, и поэтому их нет в обычном веществе. Лишь разновидность мезонов — К-мезон был тщательно изучен. Различную скорость распада у К-мезона и антиК-мезона обнаружила в 1957 году физик из Колумбийского университета By Цзяньсюн. В 2001 году опыты на ускорителях в Стэнфордском университете и в японском академгородке Цукуба [расположенном в 35 км к северо-востоку от Токио] выявили асимметрию в распаде В-мезонов и антиВ-мезонов, где антиВ-мезоны распадались чуть быстрее. Величина асимметрии будет уточняться по мере получения данных в ходе этих долгосрочных исследований.
Если антивещество распадается быстрее обычного вещества, такое положение можно уподобить сражению миллионного войска с миллионным антивойском. Если каждый
239
воин будет убивать одного неприятеля, то к концу сражения останется один воин. Вещество и антивещество взаимно уничтожатся, но благодаря крохотному превышению обычное вещество возобладает. Если такой подход верен, можно представить, сколько вещества было до великой аннигиляции.
Предсказанные стандартной моделью величины нарушения симметрии в скорости распада слишком малы, чтобы получилось наблюдаемое ныне во Вселенной количество вещества, но тут готова предложить свои услуги более юная М-теория.
Для более подробного ознакомления с проблемой см. статью: Sarah Graham «Explore: In Search of Antimatter» (Scientific American. 2001. August 20), размещенную во Всемирной Паутине по адресу: http://physicsweb.org/article/news/5/3/1/1
2. Ускорители
Как видно из названия, ускоритель разгоняет медленно движущиеся частицы. Частицы с более высокими скоростями обладают более высокой энергией, так что физика высоких энергии развивалась совместно с ускорителями частиц. Польза от частиц высоких энергий стала очевидной, когда американский физик Карл Андерсон обнаружил античастицу электрона — позитрон — среди следов, оставляемых в диффузионной камере после бомбардировки космическими лучами. Поскольку космические лучи приходят к нам, обладая различной энергией, отовсюду и когда им заблагорассудится, для проведения систематических опытов над элементарными частицами требовался более надежный источник частиц высокой энергии.
Линейные ускорители разгоняют заряженные частицы в электромагнитном поле по прямой, подобно тому как разгоняют электроны в электронно-лучевых трубках телевизи-
240
онных приемников. Мишень устанавливают в конце пути частицы, а датчики, чувствительные к оставленным продуктами столкновения частиц следам, регистрируют последствия столкновения. Для получения все более высоких энергий требуется постоянно увеличивать длину ускорителей. Стэнфордский центр линейного ускорителя с туннелем длиной 3,2 км (2 мили) разгоняет электроны (или позитроны) посредством обычной электромагнитной волны, подобно микроволновой печи. Для более подробного ознакомления см. узел Всемирной Паутины http://www.slac.stanford.edu/
Другая разновидность ускорителя — круговой. Первый круговой ускоритель был изобретен американским физиком Эрнестом Лоуренсом и получил название «циклотрон». В 1928 году Калифорнийский университет в Беркли переманил к себе из Йельского университета 27-летнего Лоуренса, намериваясь создать у себя наряду с химическим столь же крепкое физическое отделение. На следующий год Лоуренсу, внуку норвежских
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).