ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 29.06.2024
Просмотров: 522
Скачиваний: 0
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
137 |
из-за огромного давления оказывается твердой и самой плотной оболочкой.
За подробностями процесса создания этой модели и подтверждающими ее опытными данными обращайтесь к нашей книге Пять крупнейших представлений в науке (The Five Biggest Ideas in Science. N.Y.: John Wiley & Sons, Inc., 1997).
Следующие узлы Всемирной Паутины содержат свежую информацию и прекрасные иллюстративные материалы:
http://www.hartrao.ac.za/geodesy/tectonics.html http://pubs.usgs.gov/gip/dynamic/dynamic.html http://www.seismo.unr.edu/ftp/pub/louie/class/100/plate-tectonics.html http://scign.jpl.nasa.gov/learn/plate.htm
12. Теория хаоса
О тягость легкости, смысл пустоты! Бесформенный хаос прекрасных форм!
У. Шекспир. Ромео и Джульетта
Как уже говорилось в гл. 5, хаос не следует путать с произволом. Хаос означает скорее чрезвычайную восприимчивость конечного результата к малым изменениям в начальных условиях. Как поется в старой колыбельной:
279
Не было гвоздя — Подкова пропала. Не было подковы — Лошадь захромала. Лошадь захромала — Командир убит. Конница разбита, Армия бежит.
Враг вступает В город,
Пленных не щадя, Оттого что в кузнице Не было гвоздя!
[Гвоздь и подкова.
Пер. с англ. С. Маршака]
До 1960-х годов существовал некий сугубо математический метод, как оказалось, связанный с теорией хаоса.
Гастон Морис Жулиа
Гастон Морис Жулиа, математик из Алжира, после ранения в сражениях Первой мировой войны вынужден был носить на лице кожаную повязку, защищавшую сильно искалеченный нос. Из-за многочисленных операций ему приходилось долго скитаться по госпиталям, где, чтобы как-то скоротать время, он занимался математическими выкладками. В 25 лет он пишет «Записку о приближении рациональных функций». Работу он делал в связи с темой, объявленной в 1915 году Французской академией наук на соискание главной премии 1918 года, которой и удостоился; хотя французский математик и астроном Пьер Жозеф Луи Фату (1878—1929) опубликовал в декабре 1917 года работу на ту же тему, однако Жулиа отослал свою статью в Академию наук раньше. Функция представляет собой математическое правило вычисления наподобие следующего: f(x) — х2 + const. Если x = 2, а const = 3, то значение функции составит 7. Приближение (итерация) осуществляется использованием вычисленного для f значения в качестве следующего значения для х. Итак, если x = 7, то f (х) = 52, и т. д. Жулиа исследовал более сложные выражения. Особо его занимали функции и значения, при которых возможно многократное приближение без
280
бесконечного роста итоговой величины [самой функции]. Значения х, для которых повторяющиеся итерации давали конечный результат, стали именоваться пленниками [обычно говорят о множестве точек притяжения, или аттракторах]. При стремлении к бесконечности итоговых величин их называют «беглецами» [обычно говорят о множестве точек отталкивания, или репеллерах]. Вычисления велись вручную и были крайне трудоемкими даже для простых функций. Хотя Жулиа и обрел некую славу в математических кругах, его труд был основательно забыт, и вспомнили о нем уже в 1970-е годы.
Бенуа Мандельброт
Бенуа Мандельброта, родившегося в Польше в 1924 году, со статьей Жулиа познакомил в 1945 году родной дядя, профессор математики. В то время идеи Жулиа его не заинтересовали. Но спустя 30 лет после головокружительной научной карьеры Мандельброт очутился в компании IBM и обратил мощь ЭВМ на итеративные вычисления Жулиа. Мандельброт первым разработал метод графического построения, когда ЭВМ выводит на экран образ схождения и расхождения приближаемой функции.
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).
Янко Слава (Библиотека Fort/Da) || http://yanko.lib.ru |
138 |
281
Рис. I.9. Множество Мандельброта
Прекрасные образы, порождаемые методами итерации Мандельброта и Жулиа, способствовали одно время появлению бесчисленных книг и узлов Всемирной Паутины. Вот некоторые из них:
Gleick J. Making a New Science. N.Y.: Viking Penguin, 1987.
Exploring Chaos — A Guide to the New Science of Disorder / Nina Hall (Ed.). N.Y.: W. W. Norton & Company, 1991.
http://hypertextbook.com/chaos/
http://www.wfu.edu/ | http://www.wfu.edu//~petrejh4/chaosind.htm (?)
В 2002 году Стивен Вулфрем издал книгу по смежной тематике A New Kind of Science (см. http://www.wolfram.com). Его труд основан на собственных исследованиях в области клеточных автоматов, представляющих собой ряд одинаково запрограммированных автоматов, иначе «клеток», взаимодействующих друг с другом по определенным правилам. С помощью очень простых правил можно создать очень сложные образы. Некоторые из этих образов очень похожи на природные объекты, однако установление связи между математикой хаоса и пригодным описанием реального мира все еще ждет своего часа.
282
13. Предсказание землетрясении
Предсказаний землетрясений сегодня много. Поисковые машины в Интернете на запрос «Предсказание землетрясений» выдадут вам более 50 тыс. узлов Всемирной Паутины. Некоторые предсказания делаются на основе «данных» экстрасенсов (см.: Wynn Charles M., Wiggins Arthur W., Harris Sidney. Quantum Leaps in the Wrong Direction: Where Real Science Ends... and Pseudoscience Begins. Washington, 2001). Другие усилия связаны с соотнесением землетрясений с земным электричеством, поведением животных, расположением планет или иными явлениями. Несмотря на ошибочность большинства прогнозов, хотя бы один непременно оказывается верным.
Предположим, приятель предлагает вам пари: «Ставлю 20 долларов на то, что в следующем месяце произойдет крупное землетрясение в помеченной точками вот здесь на карте области».
Не принимайте вызова. Ваш приятель наверняка выиграет. Помеченная точками область на карте (рис. I.10) соответствует границам плит, составляющих земную кору. Когда
Уиггинс А., Уинн Ч. Пять нерешенных проблем науки / Артур Уиггинс, Чарлз Уинн. — Пер. с англ. А. Гарькавого. — М.: ФАИРПРЕСС, 2005. — 304 с: ил. — (Наука & Жизнь).