ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 10.08.2024
Просмотров: 644
Скачиваний: 0
СОДЕРЖАНИЕ
Введение Предмет естествознания и проблемы моделирования
Глава 1. Язык науки и язык природы
1.1. Категории «микро» и «макро»
1.4. Бесконечность: потенциальная и актуальная
Глава 2 От физики необходимого к физике возможного
2.1. Современная космология и космогония
2.2. Кризис современной космологии
2.4. «Дыры» в пространстве и времени
Глава 3 Новые физические законы
Глава 4 Структурные уровни организации материи
4.1. Информационная концепция развития систем
4.2. Особенности описания сложных систем
4.3. Концептуальная модель развития
5.1. Диссипативные структуры и явления самоорганизации
5.2. Условия возникновения самоорганизации
Глава 6 Эволюция и сотворение мира
6.1. Отрицает ли акт творения эволюцию?
6.2. Возможные альтернативы дарвинизму
6.3. Ложная альтернатива эволюционизму
Глава 7. Мышление. Мозг и компьютер
7.6.1. Эволюционное моделирование
7.6.2. Нейронные сети и нейрокомпьютер
7.6.3. «Интеллектуальные изобретения» биологической эволюции
Глава 8 Биосфера, ноосфера и цивилизация
8.1. Философские подходы к естествознанию
8.2. Основные положения учения о ноосфере Единство биосферы и человека
8.3. Наука как основной фактор ноосферы
8.4. Задачи по созиданию ноосферы
8.5. Переход биосферы в ноосферу: прогноз и реальность
1. Заселение человеком всей планеты.
2. Резкое преобразование средств связи и обмена между странами.
3. Усиление связей, в том числе политических, между всеми странами Земли.
5. Расширение границ биосферы и выход в космос.
6. Открытие новых источников энергии.
7. Равенство людей всех рас и религий.
8. Увеличение роли народных масс в решении вопросов внешней и внутренней политики.
10. Продуманная система народного образования и подъем благосостояния трудящихся.
12. Исключение войн из жизни общества.
Глава 9 Концепции возникновения жизни
Глава 10 Эволюционная медицина
Глава 11 Геронтология и эволюционная биология
11.1. Бессмертие – пройденный этап
11.2. Особь – индивид – личность
Глава 12 Эволюционно‑генетическая концепция происхождения этики
12.1. С чего начинается человек и… человечность?
12.2. Этика как продукт естественного отбора
12.3. Происхождение некоторых отрицательных эстетических эмоций
12.4. Естественный отбор на эмоции защиты старости
12.5. Групповой естественный отбор на жажду познания
12.6. Социальный отбор и порождаемые им искаженные представления об этической природе человека
12.7. О некоторых тенденциях к отречению от этических норм
12.8. Массовая и индивидуальная преступность
13.1. «Врач‑терминатор» и проблемы деонтологии
13.2. Юридические проблемы биоэтики
Заключение Типы научной рациональности
Приложения Приложение 1 Библейские представления и развитие естествознания
Приложение 2 Информационная модель физического мира
Приложение 3 Кризис инфекционного подхода Эволюционный подход к лечению ран
Лихорадка, иммунитет и здоровье человека.
Ну, а какое имеет отношение к природе их деятельность? Очень простое. Прежде чем ставить эксперимент или производить какие‑то вычисления, человек создает в своем уме некую модель тех явлений, которые он хочет изучить, исследовать. Анализируя модель, физик делает вывод, каким должен быть результат эксперимента. Он ожидает, что если собрать такой‑то прибор, то стрелки будут показывать то‑то и то‑то. Он собирает такой прибор, ставит эксперимент и убеждается, что стрелки ведут себя нужным образом. Он с удовлетворением говорит, что его модель достаточно точно отражает исследуемое явление. Аналогично, теоретик, имея запас некоторых законов природы, – или придумывая новый закон, – делает из него выводы и смотрит, согласуются ли эти выводы с тем, что получает экспериментатор. Так работают физики.
Таким образом, основное в деятельности естествоиспытателей – это исследование окружающего мира, через его моделирование. Здесь слово «модель» употребляется в максимально широком смысле (любое словесное описание – это уже модель). Модели должны быть не слишком просты – иначе можно не уловить существенных черт явления – но и не слишком сложны – иначе модель нельзя будет исследовать.
С течением времени ученые научились придумывать удовлетворяющие их модели и на этой основе исследовать окружающий мир.
Возникает вопрос, почему этот метод приводит к успеху? Почему мы познаем мир посредством моделей? Это очень тонкий, чисто философский вопрос. Так М.М.Постников сформулировал «первый основной вопрос философии природы». Удивительно, что до сих пор никто его не поднимал.
Быть может, ответ можно получить, рассмотрев сначала иной – возможно даже более интересный вопрос – возможно ли изучение природы без моделей, на основании каких‑то совершенно других принципов? А если да, то насколько эффективны такие методы познания?
Возможны, конечно, подходы в рамках религиозного или мистического опыта, но это полностью выходит за пределы нашей темы.
Как бы то ни было, будем считать экспериментально установленным тот факт, что природу мы познаем с помощью моделей.
Второй экспериментальный факт состоит в том, что, рассматривая модели в разных науках, мы вдруг обнаруживаем группы чрезвычайно сходных моделей и результаты, полученные в одной модели, могут быть применены в другой. Например, изменение численности хищника в системе «хищник‑жертва» очень похоже на изменение силы тока в колебательном контуре. Каждый может привести массу таких примеров.
Исходя из этого, М.М.Постников сформулировал «второй основной вопрос философии природы»: В чем причина такой схожести моделей? В отличие от первого, на него многие пытались давать ответы, но все эти ответы представляли собой чисто словесную шелуху. Например, одно из широко распространенных объяснений состоит в том, что этот параллелизм обусловливается материальным единством природы. Но, конечно, настоящего объяснения до сих пор нет и, по‑видимому, сейчас это одна из важнейших проблем философии.
Схожесть моделей можно по‑иному выразить, сказав, что модели каждого класса имеют общую схему, т. е. что схожие модели – это модели, которые основываются на одной и той же схеме. Введя, таким образом, понятие схемы, мы приходим к задаче абстрактного изучения схем как таковых, безотносительно к их конкретному воплощению.
Математикой называется наука, изучающая все возможные – хотя бы мысленно – схемы, их взаимосвязи, методы их конструирования, иерархии схем (схемы схем) и т. д. и т. п. Таким образом, математика не есть наука о моделях окружающего мира, а есть наука о схемах этих моделей. Математики детально изучают имеющиеся схемы моделей и обобщают опыт их применения.
Однако, многочисленность разнообразных схем моделей, накопленных в математике, не позволяет практику (скажем, инженеру) их все знать. Поэтому задача математиков – помочь практике в создании моделей по еще не получившим широкой известности схемам. С этой целью в математике изучаются не только схемы реальных моделей, но и схемы схем, схемы схем схем и т. д. до бесконечности. На практике это выражается в приобретении опыта конструирования схем на примерах решения головоломных, чисто математических задач. В результате очень часто при ответе на какой‑нибудь вопрос из практики математик, как фокусник из рукава, вытаскивает нужную схему и вместе с ней решение практической задачи.
Наконец, в математике нужно постоянно придумывать принципиально новые схемы моделей. Иногда – при редкой удаче – это удается сделать, так сказать, «из головы». Но, как правило, эти схемы приходится с большим трудом извлекать из реальных моделей. Каждый раз это – крупный успех, знаменующий скачок в развитии математики, открывающий новое поле работы. Поэтому для развития математики необходимо постоянное обращение к практике.
В последнее время широко распространилось мнение, что внедрение в практику компьютеров резко изменило принципы взаимоотношений математики и других наук. На самом деле это мнение основано на недоразумении. Компьютеризация никак на эти принципы не повлияла. Она лишь сделала безнадежно устаревшими многие излюбленные схемы моделей и позволила разработать другие, более эффективные. В истории математики так происходило уже много раз, и появление компьютеров лишь направило этот процесс по новому пути.
Следует сказать, что та или иная конкретная наука вполне может существовать и даже процветать и без разработанных в математике моделей. Примером являются биология (в которую математические модели только начали проникать) и эстетика (где математика еще не используется). Тот факт, что разработанные в математике схемы моделей – так уж сложилось исторически – ориентированы в первую очередь только на «точные» науки естествознания, является основным дефектом современной математики. Одной из ее первоочередных задач должно быть осмысление «гуманитарных» моделей и создание их общей теории. Эта теория, по‑видимому, будет совсем не похожа на привычные математические схемы и, во всяком случае, не будет иметь вид формального исчисления. Основные идеи этой будущей теории не должны заимствоваться из уже имеющихся в математике принципов, а должны возникать из конкретного анализа моделей гуманитарных наук.
Известное противопоставление «физиков» и «лириков» отражает существование двух дополнительных равноправных способов освоения фактов реального мира – рационалистического, выражающегося в системе наук, и эмоционального, выражающегося в системе искусств. Попытки исследования моделей искусства делаются ныне в рамках кибернетики (это так называемые «кибернетические теории искусства»), но их общим дефектом является стремление к дурно понятой «математизации». На самом же деле и здесь общие принципы должны не привноситься извне, а возникать на базе анализа конкретного материала той или иной области человеческой деятельности. В отношении многих математических понятий утверждение, что они являются схемами каких‑то моделей, возражений не вызывает. Например, общеизвестно, что уравнение второго порядка с постоянными коэффициентами – это схема всех моделей колебательного движения, в какой бы конкретной ситуации они не возникали.
Однако, дискуссию вызывает вопрос, как в эту концепцию входит понятие числа. Это действительно трудный вопрос, потому что возникновение понятия числа столь древнее явление, что едва ли остались следы, как люди пришли к этому понятию, т. е. в результате абстрагирования каких моделей оно возникло… Но оказывается, что это не совсем так – следы остались!
Например, они обнаруживаются в японском языке. В этом языке существуют специальные группы числительных, скажем, для круглых предметов, совсем другие числительные для длинных предметов, совсем другие числительные для живых предметов и так далее. С точки зрения, европейской грамматики это оформляется, сейчас, правда, не как различные числительные, а как одни и те же числительные, к которым прибавляются различные суффиксы. Но это вопрос лишь описания этого языкового явления. Можно сделать вывод, что система японских числительных представляет собой некоторый рудимент хода мыслей, в котором люди пришли к абстрактному понятию числа и, где‑то на самом первоначальном уровне еще питекантропов, для арбузов была одна система числительных, для дынь – другая, для палок – третья, для людей – четвертая. Конечно, это система далеко не уходила – раз, два, три и все, но, во всяком случае, для каждого набора предметов были собственные слова для их счета. Потом постепенно было замечено, что, можно использовать одни и те же слова для всех предметов круглой формы, но для предметов продолговатой формы остались другие слова. Только на очень высокой ступени развития пришли к той мысли, что вообще конкретная суть предметов роли не играет и счет можно производить в совершенно абстрактной форме.
Таким образом, моделями здесь были процедуры счета конкретных вещей, причем для каждого конкретного вида предметов использовались свои слова. А потом было замечено, что эти процедуры очень схожи, и было выработано понятие числа, как схемы любого конкретного счета.
Глава 1. Язык науки и язык природы
Что такое время, знают вроде бы все. Но ни один человек не может дать понятию «время» однозначное словесное определение, не прибегая к формулировкам типа «масляное масло». И в этом заключается глубокий научный смысл: согласно известной теореме Геделя о неполноте аксиоматического описания, подобные тавтологические конструкции представляют собой неизбежную особенность любого конечного словаря.
Известный философ Августин (354–430 гг. до н. э.) писал: «Я прекрасно знаю, что такое время, пока не думаю об этом. Но стоит задуматься – и вот я уже не знаю, что такое время».
Не правда ли, каждый пытающийся ответить на этот вопрос испытывает сходное затруднение? Когда мы задумываемся о времени, то возникает ощущение, что это неудержимый поток, в который вовлечены все события. Тысячелетний человеческий опыт показал, что поток времени неизменен. Казалось бы, его нельзя ни замедлить, ни ускорить. И уж конечно, его нельзя обратить вспять. Долго понятие времени оставалось лишь интуитивным представлением людей и объектом абстрактных философских рассуждений.
А вот Ричард Фейнман дал в своих лекциях по физике очень простое «определение» времени: «Время – это часы»…
Выдающийся филолог академик Л.В.Щерба придумал забавную фразу, быстро ставшую хрестоматийной: «Глокая куздра кудланула бокра и кудрячит бокренка». Эта фраза звучит совершенно по‑русски, совершенно по‑русски звучат все составляющие ее слова; более того, мы совершенно ясно понимаем смысл запечатленного в ней образа. И это – несмотря на то, что ни одно слово, взятое само по себе, никакого смысла не имеет.
Смысл этой фразы нам удается понять потому, что любой язык – это не просто набор слов, каждое из которых имеет определенное значение, а набор слов, имеющих определенную конструкцию и сочетающихся друг с другом по определенным правилам, придающим языку в целом смысловую структуру. «Глокую куздру» невозможно буквально перевести ни на один язык мира; но, по‑видимому, на любом языке мира можно придумать фразу, имеющую тот же самый смысл.
Природа тоже «говорит на своем языке», но в нем роль слов выполняют различные материальные объекты, взаимодействующие друг с другом по правилам, которые мы называем законами. Эти законы и позволяют передавать языком науки смысл того, что говорит природа, несмотря на то, что ни одно из ее слов не поддается буквальному переводу на человеческий язык. То есть любой ученый похож на переводчика, владеющего лишь правилами грамматики иностранного языка и упорно пытающегося передать своим языком непереводимую игру слов природы (В.Е.Жвирблис).