Файл: История и развитие методологии объектно-ориентированного программирования. Сферы применения (История и развитие методологии ООП. Сфера применения).pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 30.03.2023

Просмотров: 99

Скачиваний: 3

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Взгляд на программирование «под новым углом» (отличным от процедурного) предложили Алан Кэй и Дэн Ингаллс в языке Smalltalk (идеи Simula оказали серьезное влияние на него, а также на более поздние языки, такие как Lisp (CLOS), Object Pascal, и C++). Здесь понятие класса стало основообразующей идеей для всех остальных конструкций языка (то есть класс в Смолтоке является примитивом, посредством которого описаны более сложные конструкции). Именно он стал первым широко распространённым объектно-ориентированным языком программирования.

ООП имеет уже более чем сорокалетнюю историю, но, несмотря на это, до сих пор не существует чёткого общепринятого определения данной технологии [http://c2.com/cgi/wiki?NobodyAgreesOnWhatOoIs]. Основные принципы, заложенные в первые объектные языки и системы, подверглись существенному изменению (или искажению) и дополнению при многочисленных реализациях последующего времени. Кроме того, примерно с середины 1980-х годов термин «объектно-ориентированный» стал модным, в результате с ним произошло то же самое, что несколько раньше с термином «структурный» (ставшим модным после распространения технологии структурного программирования) — его стали искусственно «прикреплять» к любым новым разработкам, чтобы обеспечить им привлекательность. Бьёрн Страуструп в 1988 году писал, что обоснование «объектной ориентированности» чего-либо, в большинстве случаев, сводится к некорректному силлогизму: «X — это хорошо. Объектная ориентированность — это хорошо. Следовательно, X является объектно-ориентированным».

Тимоти Бадд пишет[8]:

«Роджер Кинг аргументированно настаивал, что его кот является объектно-ориентированным. Кроме прочих своих достоинств, кот демонстрирует характерное поведение, реагирует на сообщения, наделён унаследованными реакциями и управляет своим, вполне независимым, внутренним состоянием.» [ http://dl.acm.org/citation.cfm?id=66469&preflayout=flat]

ООП возникло в результате развития идеологии процедурного программирования, где данные и подпрограммы (процедуры, функции) их обработки формально не связаны. Для дальнейшего развития объектно-ориентированного программирования часто большое значение имеют понятия события (так называемое событийно-ориентированное программирование) и компонента (компонентное программирование, КОП).

В настоящее время количество прикладных языков программирования, реализующих объектно-ориентированную парадигму, является наибольшим по отношению к другим парадигмам. В области системного программирования до сих пор применяется парадигма процедурного программирования, и общепринятым языком программирования является язык C. Хотя при взаимодействии системного и прикладного уровней операционных систем заметное влияние стали оказывать языки объектно-ориентированного программирования. Например, одной из наиболее распространенных библиотек мульти-платформенного программирования является объектно-ориентированная библиотека Qt, написанная на языке C++. Наиболее распространённые в промышленности языки (С++, Delphi, C#, Java и др.) воплощают объектную модель Симулы. Примерами языков, опирающихся на модель Smalltalk, являются Objective-C, Python, Ruby.


В окончательном виде любая программа представляет собой набор инструкций процессора. Все, что написано на любом языке программирования — более удобная, упрощенная запись этого набора инструкций, облегчающая написание, отладку и последующую модификацию программы. Чем выше уровень языка, тем в более простой форме записываются одни и те же действия.

С ростом объема программы становится невозможным удерживать в памяти все детали, и становится необходимым структурировать информацию, выделять главное и отбрасывать несущественное. Этот процесс называется повышением степени абстракции программы.

Для языка высокого уровня первым шагом к повышению абстракции является использование функций, позволяющее после написания и отладки функции отвлечься от деталей ее реализации, поскольку для вызова функции требуется знать только ее интерфейс. Если глобальные переменные не используются, интерфейс полностью определяется заголовком функции.[9]

Следующий шаг — описание собственных типов данных, позволяющих структурировать и группировать информацию, представляя ее в более естественном виде. Например, все разнородные сведения, относящиеся к одному виду товара на складе, можно представить с помощью одной структуры.

Для работы с собственными типами данных требуются специальные функции. Естественно сгруппировать их с описанием этих типов данных в одном месте программы, а также по возможности отделить от ее остальных частей. При этом для использования этих типов и функций не требуется полного знания того, как именно они написаны — необходимы только описания интерфейсов. Объединение в модули описаний типов данных и функций, предназначенных для работы с ними, со скрытием от пользователя модуля несущественных деталей является дальнейшим развитием структуризации программы.

Все три описанных выше метода повышения абстракции преследуют цель упростить структуру программы, то есть представить ее в виде меньшего количества более крупных блоков и минимизировать связи между ними. Это позволяет управлять большим объемом информации и, следовательно, успешно отлаживать более сложные программы.

Введение понятия класса является естественным развитием идей модульности. В классе структуры данных и функции их обработки объединяются. Класс используется только через его интерфейс — детали реализации для пользователя класса не существенны.

Идея классов отражает строение объектов реального мира — ведь каждый предмет или процесс обладает набором характеристик или отличительных черт, иными словами, свойствами и поведением. Программы в основном предназначены для моделирования предметов, процессов и явлений реального мира, поэтому удобно иметь в языке программирования адекватный инструмент для представления моделей.


Класс является типом данных, определяемым пользователем. В классе задаются свойства и поведение какого-либо предмета или процесса в виде полей данных (аналогично структуре) и функций для работы с ними. Создаваемый тип данных обладает практически теми же свойствами, что и стандартные типы (напомню, что тип задает внутреннее представление данных в памяти компьютера, множество значений, которое могут принимать величины этого типа, а также операции и функции, применяемые к этим величинам).[10]

Существенным свойством класса является то, что детали его реализации скрыты от пользователей класса за интерфейсом. Интерфейсом класса являются заголовки его открытых методов. Таким образом, класс как модель объекта реального мира является черным ящиком, замкнутым по отношению к внешнему миру.

Идея классов является основой объектно-ориентированного программирования (ООП). Основные принципы ООП были разработаны еще в языках Simula-67 и Smalltalk, но в то время не получили широкого применения из-за трудностей освоения и низкой эффективности реализации. В С++ эти концепции реализованы эффективно и непротиворечиво, что и явилось основой успешного распространения этого языка и внедрения подобных средств в другие языки программирования.

Идеи ООП не очень просты для практического использования (их неграмотное применение приносит гораздо больше вреда, чем пользы), а освоение существующих стандартных библиотек требует времени и высокого уровня первоначальной подготовки.

Конкретные переменные типа данных класс называются экземплярами класса, или объектами. Объекты взаимодействуют между собой, посылая и получая сообщения. Сообщение — это запрос на выполнение действия, содержащий набор необходимых параметров. Механизм сообщений реализуется с помощью вызова соответствующих функций. Таким образом, с помощью ООП легко реализуется так называемая событийно-управляемая модель, когда данные активны и управляют вызовом того или иного фрагмента программного кода.

Основными свойствами ООП являются инкапсуляция, наследование и полиморфизм.[11]

Объединение данных с функциями их обработки в сочетании со скрытием ненужной для использования этих данных информации называется инкапсуляцией (encapsulation). Инкапсуляция повышает степень абстракции программы: данные класса и реализация его функций находятся ниже уровня абстракции, и при написании программы информация о них не нужна. Кроме того, инкапсуляция позволяет изменить реализацию класса без модификации основной части программы, если интерфейс остался прежним (например, при необходимости сменить способ хранения данных с массива на стек).


Инкапсуляция позволяет использовать класс в другом окружении и быть уверенным, что класс не испортит не принадлежащие ему области памяти, а также создавать библиотеки классов для применения во многих программах.

Наследование — возможность создания иерархии классов, когда потомки наследуют все свойства своих предков, могут их изменять и добавлять новые. Свойства при наследовании повторно не описываются, что сокращает объем программы. Выделение общих черт различных классов в один класс-предок является мощным механизмом абстракции — ведь и любая наука начинается с абстрагирования и классификации, которые помогают справиться со сложностью рассматриваемой предметной области.

Иерархия классов представляется в виде древовидной структуры, в которой более общие классы располагаются ближе к корню, а более специализированные — на ветвях и листьях. В С++ каждый класс может иметь сколько угодно потомков и предков. Иногда предки называются надклассами или суперклассами, а потомки — подклассами или субклассами.[12]

Третьим китом, на котором стоит ООП, является полиморфизм — возможность использовать в различных классах иерархии одно имя для обозначения сходных по смыслу действий и гибко выбирать требуемое действие во время выполнения программы.

Понятие полиморфизма используется в С++ весьма широко. Простым примером полиморфизма может служить перегрузка функций, когда из нескольких вариантов выбирается наиболее подходящая функция по соответствию ее прототипа передаваемым параметрам. Другой пример — использование шаблонов функций, когда один и тот же код видоизменяется в соответствии с типом, переданным в качестве параметра. Чаще всего понятие полиморфизма связывают с механизмом виртуальных методов.

Использование при программировании понятий, более близких к предметной области, благодаря представлению программы в терминах поведения объектов является большим преимуществом ООП. Однако проектирование такой программы представляет собой весьма сложную задачу, поскольку в процесс добавляется еще один важный этап — разработка иерархии классов.[13]

Плохо спроектированная иерархия приводит к созданию сложных и запутанных программ. Важно до начала проектирования правильно определить, требуется ли вообще применять объектно-ориентированный подход. Если в иерархии классов нет необходимости, то, как правило, достаточно ограничиться модульной технологией.


Глава 2. Критический взгляд на ООП

2.1 Производительность объектных программ

Гради Буч указывает[14] на следующие причины, приводящие к снижению производительности программ из-за использования объектно-ориентированных средств:

  • Динамическое связывание методов. Обеспечение полиморфного поведения объектов приводит к необходимости связывать методы, вызываемые программой (то есть определять, какой конкретно метод будет вызываться) не на этапе компиляции, а в процессе исполнения программы, на что тратится дополнительное время. При этом реально динамическое связывание требуется не более чем для 20 % вызовов, но некоторые ООП-языки используют его постоянно.
  • Значительная глубина абстракции. ООП-разработка часто приводит к созданию «многослойных» приложений, где выполнение объектом требуемого действия сводится к множеству обращений к объектам более низкого уровня. В таком приложении происходит очень много вызовов методов и возвратов из методов, что, естественно, сказывается на производительности.
  • Наследование «размывает» код. Код, относящийся к «конечным» классам иерархии наследования, которые обычно и используются программой непосредственно, находится не только в самих этих классах, но и в их классах-предках. Относящиеся к одному классу методы фактически описываются в разных классах. Это приводит к двум неприятным моментам:
    • Снижается скорость трансляции, так как компоновщику приходится подгружать описания всех классов иерархии.
    • Снижается производительность программы в системе со страничной памятью — поскольку методы одного класса физически находятся в разных местах кода, далеко друг от друга, при работе фрагментов программы, активно обращающихся к унаследованным методам, система вынуждена производить частые переключения страниц.
  • Инкапсуляция снижает скорость доступа к данным. Запрет на прямой доступ к полям класса извне приводит к необходимости создания и использования методов доступа. И написание, и компиляция, и исполнение методов доступа сопряжены с дополнительными расходами.
  • Динамическое создание и уничтожение объектов. Динамически создаваемые объекты, как правило, размещаются в куче, что менее эффективно, чем размещение их на стеке и, тем более, статическое выделение памяти под них на этапе компиляции.