ВУЗ: Не указан
Категория: Не указан
Дисциплина: Не указана
Добавлен: 01.03.2019
Просмотров: 1095
Скачиваний: 12
Горы и нагорья, приуроченные к древним платформам (с докембрийским складчатым основанием. Горы и нагорья, сформированные в байкальскую складчатость (см. распечатку).
В нижнем палеозое около докембрийских платформ существовала геосинклиналь, получившая название каледонской. В конце силура и начале девона – в каледонскую горообразовательную эпоху – на месте этой геосинклинали возникли складчатые горы. Они занимали огромные площади в Европе, Азии, Америке и частично в Африке. До настоящего времени каледонские структуры сохранились в Шотландии (Северо-Шотландское нагорье), Скандинавии (Скандинавские горы), на Шпицбергене, Гренландии (Восточно-Гренландские), Лабрадоре, а также в Забайкалье, по Енисею, на западе Казахстана (казахский мелкосопочник) и местами в Центральной Азии, т.е. вокруг всех трех северных платформ, а также частично в Австралии.
Во второй половине девонского и в каменноугольном периоде существовала герцинская геосинклиналь. Герцинский возраст имеют Урал, складчатый фундамент Западно-Сибирской низменности, Таймыр, равнины и многие горы Средней и центральной Азии, Месета, Центральный Французский массив, горы Средней Европы, Аппалачи, Капская область, Австралийские Альпы.
Тихоокеанская геосинклиналь – система островов и горных хребтов – протягивается вдоль побережья Тихого океана по Восточной Азии, Новой Гвинее, Австралии, Новой Зеландии, Антарктическому полуострову и по западным берегам обеих Америк.
Альпийская геосинклиналь простирается от Атласа через Южную Европу, Крым, Кавказ, Переднюю Азию, Гималаи, Бирму до Индонезии, где она пересекается с Тихоокеанской.
Горообразовательные процессы происходили в конце мезозоя в Тихоокеанской геосинклинали и в третичном периоде – в Альпийской.
Геосинклинали в процессе своего развития переходят в платформенные области и таким образом увеличивают площади материков. Горы, возникшие в геосинклиналях, в последующем снижаются выветриванием и денудацией, а корни складок превращаются в фундамент платформы. Многие палеозойские платформы во время альпийской складчатости были затронуты повторным горообразованием и превратились в возрожденные горы.
В настоящее время геосинклинальные процессы характерны для тихоокеанского подвижного пояса (Курило-Камчатская островная гряда, Алеутские, Японские о-ва и др.), Карибского (Антильские о-ва), Средиземного и Черного морей и др. районов Земли.
Для современных геосинклинальных областей характерно сочетание глубоководных океанических желобов (Марианский, Курило-Камчатский), котловин окраинных морей (Японское, Охотское и др.), архипелагов островов (Японских, Курильских и др.).
Области земной коры, охваченные колебательными движениями малого размаха и малой скорости, называются платформами. Геологическая структура, возникающая в платформенных условиях, тоже называется платформой. Общей чертой всех платформ помимо их жесткости, служит двухэтажная структура. Нижний этаж,или фундамент – наследие геосинклинального режима - состоит из смятых в складки, разбитых на блоки метаморфических пород – гнейсов, кристаллических сланцев и т.д., представляющих собой продукты древнейших складчатостей, которые завершились более 1,5 млрд. лет назад. На фундаменте горизонтально залегает платформенный чехол (верхний этаж) - толща слоистых осадочных горных пород, накопившихся в более поздние геологические периоды, свидетельствующая о небольшом размахе колебательных движений, вызывавших трансгрессии мелководных морей, сменявшихся затем регрессиями морей. Древние платформы отличает относительная стабильность, отсутствие складчатых движений, слабая дислоцированность. В рельефе им соответствуют большие равнины (включая отдельные внутриплатформенные горные страны). В пределах платформы выделяются следующие крупнейшие структурные единицы:щиты (выходы на поверхность кристаллических пород) и плиты (породы фундамента погружены на глубину и перекрыты осадочным чехлом). Для платформ также характерно чередование антеклиз – обширных пологих поднятий исинеклиз – столь же обширных и пологих прогибов. Средняя скорость новейших тектонических движений на платформах – 0,07-0,25 мм/год (в складчатых зонах – 1-3 мм/год).
Древнейшие докембрийские платформы расположены на Земле двумя широтными рядами. Первый находится в северных умеренных широтах (служит основой северных материков) и состоит из Северо-Американской (включая Гренландию), Восточно-Европейской и Сибирской платформ, второй ряд составляют платформы экваториальных материков (глыбы Гондваны) – Южной Америки, Африки (с Аравией), Индостана, Китая (Восточно-Китайская, Южно-Китайская) и Австралии. В стороне лежит Антарктическая платформа.
Гипотеза горизонтального движения материков северный ряд платформ связывает с расколом материка Лавразии, а южный ряд рассматривает в качестве частей огромного материка Гондваны.
Кроме докембрийских (по возрасту фундамента – надпротерозойские, или эпипротерозойские; от греч. epi – после, над) существуют платформы байкальские, каледонские и герцинские, получившие название молодых платформ (эпибайкальские, эпикаледонские, эпигерцинские): Туранская, Западно-Сибирская, Патагонская.
На материках в платформенных областях преобладают низменности, равнины, плато, плоскогорья. Так, в области Русской равнины сформировалась Восточно-Европейская равнина, Южно-Американской платформе отвечают два элемента планетарного рельефа – Амазонская низменность и Бразильское нагорье. [9]
Эпохи складкообразования в фанерозое имели глобальный характер и не могли не отразится на структуре сложившихся к тому времени платформ. Докембрийские платформы сохраняли стабильность, но более молодые, эпипалеозойские,в ряде крупных регионов испытывали серьезную перестройку, выразившуюся в общем сводовом поднятии, глубоких разломах и крупных вертикальных перемещениях глыб относительно друг друга. В результате вторичного эпиплатформенного орогенеза возникают складчато-глыбовые горы (возрожденные горы). Классический пример – Тянь-Шань, где возрождение горного рельефа произошло во время альпийского орогенеза.
Континентальные рифты (от англ. rift – щель, разлом) подобно геосинклиналям отличаются повышенной подвижностью земной коры, высокой сейсмичностью и вулканизмом. Однако рифтовые зоны как структурные элементы земной коры полная противоположность геосинклиналям. В геосинклиналях за погружением следует накопление мощных толщ осадков, затем орогенез и как конечный результат – утолщение континентальной коры. Рифтовые зоны возникают под влиянием восходящих движений в мантии, которая, внедряясь в земную кору, приподнимает, дробит и частично перерабатывает ее. Осью рифтовой зоны является узкая тектоническая впадина – грабен (от нем. – ров). Рифтовые зоны на материках – это области деградации континентальной коры, ее перерождения в кору океаническую. Рифты разновозрастны: древние рифтовые зоны платформ называют авлакогенами (развивались на протяжении от рифея до кайнозоя). На Русской платформе крупнейшим авлакогеном является Припятско-Днепровско-Донецкий. Современные рифтовые ситемы были заложены в кайнозое. В их числе – Восточно-Африканская рифтовая система, в Западной Европе – Верхнерейнский грабен, в России – Байкальская рифтовая система.
-
Антропогенное воздействие на литосферу
3.1 Антропогенное воздействие на почвы
Почва - один из важнейших компонентов окружающей природной среды. Все основные ее экологические функции замыкаются на одном обобщающем показателе -- почвенном плодородии. Отчуждая с полей основной (зерно, корнеплоды, овощи и др.) и побочный урожай (солома, листья, ботва и др.), человек размыкает частично или полностью биологический круговорот веществ, нарушает способность почвы к саморегуляции и снижает ее плодородие. Даже частичная потеря гумуса и, как следствие, снижение плодородия, не дает почве возможность выполнять в полной мере свои экологические функции, и она начинает деградировать, т. е. ухудшать свои свойства. К деградации почв (земель) ведут и другие причины, преимущественно антропогенного характера.
В наибольшей степени деградируют почвы агроэкосистем. Причина неустойчивого состояния агроэкосистем обусловлена их упрощенным фитоценозом, который не обеспечивает оптимальную саморегуляцию, постоянство структуры и продуктивности. И если у природных экосистем биологическая продуктивность обеспечивается действием естественных законов природы, то выход первичной продукции (урожая) в агроэкосистемах всецело зависит от такого субъективного фактора, как человек, уровня его агрономических знаний, технической оснащенности, социально-экономических условий и т. д., а значит, остается непостоянным.
Например, в случае создания человеком монокультуры (пшеницы, свеклы, кукурузы и т. д.) в агроэкосистеме нарушается видовое разнообразие растительных сообществ. Агроэкосистем упрощается, объединяется и становится неустойчивой, не способной противостоять биотическому или биотическому экологическому стрессу.
Основные виды антропогенного воздействия на почвы, следующие:
-
1) эрозия (ветровая и водная);
-
2) загрязнение;
-
3) вторичное засоление и заболачивание;
-
4) опустынивание;
-
5) отчуждение земель для промышленного и коммунального строительства.
Эрозия почв (земель)
Эрозия почв (от лат. Eros -- разъедание) - разрушение и снос верхних наиболее плодородных горизонтов и подстилающих пород ветром (ветровая эрозия) или потоками воды (водная эрозия). Земли, подвергшиеся разрушению в процессе эрозии, называют эродированными.
К эрозионным процессам относят также промышленную эрозию (разрушение сельскохозяйственных земель при строительстве и разработке карьеров), военную эрозию (воронки, траншеи), пастбищную эрозию (при интенсивной пастьбе скота), ирригационную (разрушение почв при прокладке каналов и нарушении норм поливов) и др.
Однако настоящим бичом земледелия у нас в стране и в мире остаются водная эрозия (ей подвержены 31% суши) и ветровая эрозия (дефляция), активно действующая на 34% поверхности суши. В США эродировано, т. е. подвержено эрозии, 40% всех сельскохозяйственных земель, а в засушливых районах мира еще больше -- 60% от общей площади, из них 20% сильно эродированы.
Эрозия оказывает существенное негативное влияние на состояние почвенного покрова, а во многих случаях разрушает его полностью. Падает биологическая продуктивность растений, снижаются урожаи и качество зерновых культур, хлопка, чая и др.
Ветровая эрозия (дефляция) почв. Под ветровой эрозией понимают выдувание, перенос и отложение мельчайших почвенных частиц ветром. Интенсивность ветровой эрозии зависит от скорости ветра, устойчивости почвы, наличия растительного покрова, особенностей рельефа и от других факторов. Огромное влияние на ее развитие оказывают антропогенные факторы. Например, уничтожение растительности, нерегулируемый выпас скота, неправильное применение агротехнических мер резко активизируют эрозионные процессы.
Различают местную (повседневную) ветровую эрозию и пыльные бури. Первая проявляется в виде поземок и столбов пыли при небольших скоростях ветра.
Пыльные бури возникают при очень сильных и продолжительных ветрах. Скорость ветра достигает 20--30 м/с и более. Наиболее часто пыльные бури наблюдаются в засушливых районах (сухие степи, полупустыни, пустыни). Пыльные бури безвозвратно уносят самый плодородный верхний слой почв; они способны развеять за несколько часов до 500 т почвы с 1 га пашни, негативно влияют на все компоненты окружающей природной среды, загрязняют атмосферный воздух, водоемы, отрицательно влияют на здоровье человека. В настоящее время крупнейший источник пыли -- Арал. На космических снимках видны шлейфы пыли, которые тянутся в стороны от Арала на многие сотни километров. Общая масса переносимой ветром пыли в районе Арала достигает 90 млн т в год. Другой крупный пылевой очаг в России -- Черные земли Калмыкии.
Водная эрозия почв (земель). Под водной эрозией понимают разрушение почв под действием временных водных потоков. Различают следующие формы водной эрозии: плоскостную, струйчатую, овражную, береговую. Как и в случае ветровой эрозии, условия для проявления водной эрозии создают природные факторы, а основной причиной ее развития является производственная и иная деятельность человека. В частности, появление новой тяжелой почвообрабатывающей техники, разрушающей структуру почвы, -- одна из причин активизации водной эрозии в последние десятилетия. Другие негативные антропогенные факторы: уничтожение растительности и лесов, чрезмерный выпас скота, отвальная обработка почв и др.
Среди различных форм проявления водной эрозии значительный вред окружающей природной среде и в первую очередь почвам приносит овражная эрозия. Экологический ущерб от оврагов огромен. Овраги уничтожают ценные сельскохозяйственные земли, способствуют интенсивному смыву почвенного покрова, заиливают малые реки и водохранилища, создают густо расчлененный рельеф. Площадь оврагов только на территории Русской равнины составляет 5 млн га и продолжает увеличиваться. Подсчитано, что ежедневные потери почв из-за развития оврагов достигают 100--200 га
Загрязнение почв
Поверхностные слои почв легко загрязняются. Большие концентрации в почве различных химических соединений -- токсикантов пагубно влияют на жизнедеятельность почвенных организмов. При этом теряется способность почвы к самоочищению от болезнетворных и других нежелательных микроорганизмов, что чревато тяжелыми последствиями для человека, растительного и животного мира. Например, в сильно загрязненных почвах возбудители тифа и паратифа могут сохраняться до полутора лет, тогда как в незагрязненных -- лишь в течение двух-трех суток.
Основные загрязнители почвы:
-
1) пестициды (ядохимикаты);
-
2) минеральные удобрения;
-
3) отходы и отбросы производства;
-
4) газодымовые выбросы загрязняющих веществ в атмосферу;
-
5) нефть и нефтепродукты.
В мире ежегодно производится более миллиона тонн пестицидов. Только в России используется более 100 индивидуальных пестицидов при общем годовом объеме их производства -- 100 тыс. т. Наиболее загрязненными пестицидами районами являются Краснодарский край и Ростовская область (в среднем около 20 кг. на 1 га). В России на одного жителя в год приходится около 1 кг пестицидов, во многих других развитых промышленных странах мира эта величина существенно выше. Мировое производство пестицидов постоянно растет.
В настоящее время влияние пестицидов на здоровье населения многие ученые приравнивают к воздействию на человека радиоактивных веществ. Достоверно установлено, что при применении пестицидов, наряду с некоторым увеличением урожайности, отмечается рост видового состава вредителей, ухудшаются пищевые качества и сохранность продукции, утрачивается естественное плодородие и т. д.
По мнению ученых, подавляющая часть применяемых пестицидов попадает в окружающую среду (воду, воздух), минуя виды-мишени. Пестициды вызывают глубокие изменения всей экосистемы, действуя на все живые организмы, в то время как человек использует их для уничтожения весьма ограниченного числа видов организмов. В результате наблюдается интоксикация огромного числа других биологических видов (полезных насекомых, птиц) вплоть до их исчезновения. К тому же человек старается использовать значительно больше пестицидов, чем это необходимо, и еще более усугубляет проблему.
Среди пестицидов наибольшую опасность представляют стойкие хлорорганические соединения (ДДТ, ГХБ, ГХЦГ), которые могут сохраняться в почвах в течение многих лет и даже малые их концентрации в результате биологического накопления могут стать опасными для жизни организмов. Но и в ничтожных концентрациях пестициды подавляют иммунную систему организма, а в более высоких концентрациях обладают выраженными мутагенными и канцерогенными свойствами. Попадая в организм человека, пестициды могут вызвать не только быстрый рост злокачественных новообразований, но и поражать организм генетически, что может представлять серьезную опасность для здоровья будущих поколений. Вот почему применение наиболее опасного из них -- ДДТ в нашей стране и в ряде других стран запрещено. Таким образом, можно с уверенностью констатировать, что общий экологический вред от использования загрязняющих почву пестицидов многократно превышает пользу от их применения. Воздействие пестицидов оказывается весьма негативным не только для человека, но и для всей фауны и флоры. Растительный покров оказался очень чувствительным к действию пестицидов, причем не только в зонах его применения, но и в местах, достаточно удаленных от них, из-за переноса загрязняющих веществ ветром или поверхностным стоком воды.