Файл: Дыхание.Гликолиз Физраст.doc

ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 09.05.2019

Просмотров: 488

Скачиваний: 1

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Вторая стадия — цикл трикарбоновых кислот (цикл Кребса). В 1935 г. венгерский ученый А. Сент-Дьердьи установил, что добавление небольших количеств органических кислот (фумаровой, яблочной или янтарной) усиливает поглощение кислорода измельченными тканями. Продолжая эти исследования, Г. Кребс пришел к выводу, что главным путем окисления углеводов являются циклические реакции, в которых происходит постепенное преобразование ряда органических кислот. Эти преобразования и были названы циклом трикарбоновых кислот или циклом Кребса. Сам исследователь за эти работы в 1953 г. был удостоен Нобелевской премии.

В цикл вступает активный ацетат, или ацетил-КоА. Сущность реакций, входящих в цикл, состоит в том, что ацетил-КоА конденсируется с щавелевоуксусной кислотой (ЩУК). Далее превращение идет через ряд ди- и трикарбоновых органических кислот. В результате ЩУК регенерирует в прежнем виде. В процессе цикла присоединяются три молекулы Н20, выделяются две молекулы С02 и четыре пары водорода, которые восстанавливают соответствующие коферменты (ФАД и НАД). Суммарная реакция цикла выражена уравнением:

CH3CO-S-K0A + ЗН20 + ЗНАД + ФАД + АДФ + Фн -> 2С02 + SH-KoA + ЗНАДН + ЗН+ + ФАДН2 + АТФ

Отдельные реакции протекают следующим образом. Ацетил-КоА, конденсируясь с ЩУК, дает лимонную кислоту, при этом КоА выделяется в прежнем виде. Этот процесс катализируется ферментом цитратсинтазой. Лимонная кислота превращается в изолимонную. На следующем этапе происходит окисление изолимонной кислоты, реакция катализируется ферментом изоцитратдегидрогеназой. При этом протоны и электроны переносятся на НАД (образуется НАДН + Н+). Для протекания этой реакции требуются ионы магния или марганца. Одновременно происходит процесс декарбоксилирования. За счет одного из атомов углерода, вступившего в цикл Кребса, первая молекула С02 вьделяется. Образовавшаяся а-кетоглутаровая кислота подвергается окислительному декарбоксилированию подобно тому, которое разбиралось по отношению к пировиноградной кислоте. Этот процесс также катализируется мультиферментным комплексом кетоглутаратдегидрогеназой, содержащим тиаминпирофосфат, липоевую кислоту, коэнзим А, ФАД и НАД. В результате за счет второго атома углерода, вступившего в цикл, выделяется вторая молекула С02. Одновременно происходит восстановление еще одной молекулы НАД до НАДН и образуется сукцинил-КоА. На следующем этапе сукцинил-КоА расщепляется на янтарную кислоту (сукцинат) и HS—КоА. Выделяющаяся при этом энергия накапливается в макроэргической фосфатной связи АТФ. Такой этап важен, так как выделяющаяся энергия непосредственно накапливается в АТФ. Этот тип образования АТФ, подобно ее образованию в процессе гликолиза, относится к субстратному фосфорилированию. Образовавшаяся янтарная кислота окисляется до фумаровой кислоты. Реакция катализируется ферментом сукцинатдегидрогеназой, простетической группой которого является ФАД. Одновременно выделяется третья пара водородов, образуя ФАД-Н2.












На следующем этапе фумаровая кислота, присоединяя молекулу воды, превращается в яблочную кислоту с помощью фермента фумаратдегидрогеназы. На последнем этапе цикла яблочная кислота окисляется до ЩУК. Эту реакцию катализирует фермент малатдегидрогенеза, активной группой которого является НАД, и происходит выделение четвертой пары протонов — образуется НАДН + Н+. Таким образом, ЩУК регенерирует в прежнем виде и может реагировать со следующей молекулой активного ацетата, поэтому практически ЩУК в процессе цикла не расходуется. Одновременно в ходе каждого цикла выделяются две молекулы С02 и образуются три молекулы НАДН + Н+ и молекула ФАДН2. Многие реакции цикла Кребса обратимы.

Важно также отметить, что образовавшиеся в рассмотренных реакциях органические кислоты могут служить ма­териалом для построения аминокислот, жиров и углеводов. В этом случае они выводятся из цикла. Вместе с тем соединения, входящие в цикл, могут образовываться в ряде других реакций (например, при декарбоксилировании амино­кислот) и вступать в цикл. Таким образом, рассмотренные превращения не отделены от других реакций метаболизма, а тесно с ними взаимосвязаны. Для реакций цикла Кребса кислород не требуется. Кислород необходим для регенерации или окисления восстановленных коферментов (НАДН + Н+ и ФАДН2). Количество окисленных форм этих коферментов ограничено. В анаэробных условиях, когда регенерация коферментов невозможна, они быстро оказываются исчерпанными и весь процесс прекращается. Окисление коферментов осуществляется в дыхательной цепи, или цепи переноса водорода и электронов. Конечным акцептором в этой цепи является кислород воздуха. Энергия, высвобождаемая при окислении коферментов, накапливается в макроэргических фосфатных связях АТФ.



Подводя итог, можно отметить, что в результате распада 1 молекулы ПВК в аэробной фазе (декарбоксилирование ПВК + цикл Кребса) выделяется ЗС02, 4 молекулы НАДН + Н+ и 1 молекула ФАДН2. Таким образом, 5 пар Н2, образующихся из ПВК и воды, поступают в дыхательную цепь.



Третья стадия — электронтранспортная цепь (ЭТЦ). В процессе окисления пировиноградной кислоты в цикле Кребса образовались пары водорода 2Н, которые мы можем рассматривать как 2Н+ + 2е. Именно в таком виде они, акцептированные НАД и ФАД, передаются по цепи переносчиков. В процессе переноса протонов и электронов важную роль играют ферменты, относящиеся к классу оксидоредуктаз. Оксидоредуктазы, участвующие в дыхательной цепи, делятся на следующие основные группы. Пиридиновые дегидрогеназы, у которых коферментом служит НАД или НАДФ, отнимают два протона и два электрона от субстрата. При этом к коферментам присоединяются один протон и два электрона. Протон и один электрон связываются с атомом углерода в молекуле НАД, а второй электрон нейтрализует положительный заряд атома азота. Один протон выделяется в среду. НАД+ и НАДН хорошо растворимы в воде и присутствуют в цитоплазме и митохондриях. Коферменты НАД и НАДФ связаны с ферментом с помощью ионов металла и сульфгидрильных группировок. В зависимости от белкового носителя, к которому присоединен кофермент (НАД или НАДФ), различают более 150 пиридиновых дегидрогеназ. Каждая из них специфична по отношению к определенному субстрату. Необходимо учитывать, что НАД и НАДФ могут воспринимать протоны и электроны лишь в том случае, если субстрат имеет более отрицательное значение потенциала по сравнению с ними.




Флавиновые дегидрогеназы.

Это также большая группа ферментов, катализирующая отнятие двух протонов и двух электронов от различных субстратов. Простетической группой этих ферментов служат производные витамина В2 (рибофлавин) — флавинадениндинуклеотид (ФАД) и флавинмононуклеотид (ФМН). Активной частью флавиновых дегидрогеназ служит изоаллоксазиновое кольцо. В процессе восстановления именно к этой группировке присоединяется 2Н (2Н+ + 2e). Простетическая группа у флавиновых дегидрогеназ прочно прикреплена к белковому носителю. Специфичность и в этом случае определяется белковой частью фермента.





Цитохромы.



Простетическая группа цитохромов представлена железопорфиринами. Железопорфириновая группа (гем) в цитохромах прочно связана с белком через атомы серы аминокислоты цистеина. Известно около 20 цитохромов, которые делят на четыре главных класса: а, Ь, с, d, отличающихся между собой природой простетической группы: цитохромы а содержат железоформилпорфирины, цитохромы b — железопротопорфирины, цитохромы d — железогидропорфирины. В каждую группу цитохромов входит по нескольку различающихся между собой ферментов. Роль цитохромов заключается в переносе электронов. Содержащееся в цитохромах железо способно к обратимым окислительно-восстановительным реакциям. Воспринимая электрон, железо восстанавливается, теряя его, окисляется: Fe3+ ± е <-> Fe2+. В ЭТЦ митохондрий направление транспорта электронов определяется величиной окислительно-восстановительного потенциала цитохромов: цит.b —> цит.с1 —> цит.с —> цит.аа3 -> 02. Непосредственно с кислородом воздуха может реагировать только цитохромоксидаза (цитохром аа3), которая кроме железа содержит атомы меди. Помимо перечисленных ферментов в переносе электронов по дыхательной цепи принимают участие кофермент Q и железосерные белки. Кофермент Q — это производное бензохинона, получившее название убихинон. Убихинон представляет собой кольцевую молекулу с двумя присоединенными к ней атомами кислорода, для которой возможны три состояния. В полностью окисленном состоянии или хиноновой форме оба атома кислорода связаны с кольцом двойными связями. Присоединение одного атома водорода к одному из атомов кислорода дает полухиноновую форму QH. В полностью восстановленной форме атомы водорода присоединяются к обоим атомам кислорода. Эта форма носит название гидрохиноновой — QH2. Таким образом, кофермент Q может присоединять 2 протона и 2 электрона. Убихинон растворим в жирах и в связи с этим подвижен в липидной фазе мембран. Железосерные белки содержат FeS — это переносчики электронов подобно цитохромам. Содержащееся в них железо обратимо восстанавливается и окисляется.





Путь переноса протонов и электронов от одной молекулы переносчика к другой представляет собой окислительно-восстановительный процесс. При этом молекула, отдающая электрон или (и) протон, окисляется, а молекула, воспринимающая электрон или (и) протон, восстанавливается. Движущей силой транспорта электронов в дыхательной цепи является разность потенциалов. В связи с этим расположение отдельных переносчиков в дыхательной цепи, так же как и в цепи фотосинтетической, определяется величиной их окислительно-восстановительного потенциала (О/В). В начале цепи расположен НАД, обладающий наибольшей отрицательной величиной О/В потенциала






(—0,32 В), а в конце — кислород с наиболее положительной величиной (+0,82 В). Остальные переносчики ФАД, KoQ цитохромы расположены между ними в порядке последовательного повышения потенциала. Это и позволяет электронам передвигаться по направлению к кислороду (наивысший положительный потенциал). Таким образом, роль ферментов дыхательной цепи состоит не только в выполнении каталитической функции, но, что особенно важно, в обеспечении упорядоченного транспорта электронов от одного компонента к другому на кислород, что сопровождается запасанием энергии.



В 1939—1940 гг. биохимик В.А Белицер указал, что выделяющаяся в процессе передачи по дыхательной цепи электронов энергия частично накапливается в АТФ. При переносе электронов свободная энергия системы постепенно уменьшается. Общее изменение энергии при переносе пары водородов и пары электронов от НАД на кислород можно рассчитывать по формуле: ∆G0 = n-F∆E0, где я — число электронов, равное 2; F — фарада = 96633,97 Дж; ∆Е0 — разность потенциалов между участком цепи от —0,32 до +0,82 = 1,14; ∆G0 —стандартное изменение свободной энергии, 2-96633,97 Дж Т,14 = 220,8 кДж. Таким образом, изменение свободной энергии системы составляет около 220,8 кДж. Свободная энергия гидролиза АТФ равна 30,6 кДж. Исходя из того, что уменьшение свободной энергии системы при переносе пары электронов с НАД на кислород составляет 220,8 кДж, можно было предположить возможность образования из АДФ + Фн семи молекул АТФ. Однако было показано, что при прохождении пары электронов от НАДН до 1/2 02 образуется всего 3 молекулы АТФ. Из этого был сделан вывод, что в цепи переноса электронов имеется три пункта фосфорилирования. Окислительное фосфорилирование. Накопление энергии окисления в АТФ при продвижении электрона по цепи переносчиков называют окислительным фосфорилированием. Механизм образования АТФ в процессе окислительного фосфорилирования, так же как и фотофосфорилирования, объяснен благодаря работам английского биохимика П. Митчелла. Его теория получила название хемиосмотической. Для понимания этой теории существенным является представление о том, что мембраны являются непроницаемыми для протонов. В то же время мембраны хорошо проницаемы для воды и поэтому благодаря диссоциации в водных растворах нет дефицита протонов. Согласно хемиосмотической теории свободная энергия, образованная при окислительно-восстановительных реакциях в дыхательной цепи, преобразуется в электрохимический градиент ионов водорода (∆μН+). При этом мембрана переходит в высокоэнергетическое состояние. Ионы Н+ (протоны) переносятся с внутренней стороны внутренней мембраны на ее внешнюю сторону (из матрикса митохондрии в межмембранное пространство) с помощью переносчиков. ∆μ Н+, в свою очередь, является источником энергии для образования АТФ из АДФ и имеет две составляющие: градиент значения рН и градиент электрического потенциала. Переносчики дыхательной цепи сосредоточены на внутренней мембране митохондрии. При этом они как бы вплетены в митохондриальную мембрану и составляют дыхательные ансамбли. Так же как в мембранах хлоропластов, переносчики, расположенные в митохондриях, неоднородны. Одни из них переносят протоны и электроны, а другие — только электроны. Использование переносчиков второго типа (переносящих электрон) возможно потому, что протоны могут находиться в водной среде клетки в свободном состоянии. В мембране мито­хондрии, также как и в мембране хлоропластов, переносчики протонов и электронов чередуются с переносчиками электронов, что имеет принципиальное значение для хемиосмотической теории. Молекула переносчика, несущая протоны и электроны, взаимодействует с переносчиком, воспринимающим только электроны, и протоны освобождаются в межмембранное пространство. Именно это, согласно хемиосмотической теории, лежит в основе преобразования энергии, выделяющейся в процессе окисления, в энергию электрохимического мембранного потенциала и далее в энергию АТФ. Согласно теории П. Митчелла, при переносе пары электронов от НАД на кислород они пересекают мембрану 3 раза, и этот перенос сопровождается выделением на внешнюю сторону мембраны 6 (3 пар) протонов. Как видно из приведенной схемы, восстановленный кофермент НАДН + Н+, образующийся в реакциях цикла Кребса, располагается на внутренней стороне мембраны митохондрий. На первом этапе ФАД воспринимает протоны и электроны от НАД и восстанавливается, образуя ФАДН2. С помощью этого фермента 2Н+ переносятся на другую (внешнюю) сторону мембраны, и здесь происходит первое разделение зарядов. Два протона выделяются на внешнюю сторону внутренней мембраны, а электроны присоединяются к переносчику (железосерный белок), с помощью которого переносятся на внутреннюю сторону мембраны. При этом происходит восстановление железа Fe3+ + е —> Fe2+. Этот переносчик переправляет электроны снова на внутреннюю сторону мембраны. Здесь электроны акцептируются KoQ (убихинон — переносчик Н), который, заряжаясь отрицательно, захватывает двумя электронами два протона из внутренней среды. Поскольку KoQ растворим в липидах, он диффундирует к внешней стороне мембраны и выделяет там еще 2Н+ (второе разделение зарядов), а электроны передаются на цитохром b. Рассматривая схему, мы указали на два места выделения (всего четырех) прогонов. Между тем, согласно хемиосмотической теории, локализация пунктов фосфорилирования в дыхательной цепи определяется пунктами выделения ионов Н+. Поскольку, как указывалось выше, показано наличие трех мест фосфорилирования, то необходима транслокация через внутреннюю мембрану трех пар протонов. Однако точно место выделения третьей пары протонов не установлено. Предполагается, что третья пара Н+ выделяется также при переносе электронов от KoQ (убихинона) к цитохрому b. При этом участвуют 2 молекулы убихинона, которые сначала переходят в полухинон, а затем в гидрохинон (выделяется третья пара Н+). Далее электроны передвигаются по цепи цитохромов b —> с1 —> с —> аа3, содержащих железо. В каждом из них происходят обратимые окислительно-восстановительные превращения железа. На заключительном этапе электроны переносятся ферментом цитохромоксидазой (содержащей наряду с железом медь) на внутреннюю сторону мембраны на кислород. Кислород, заряжаясь, воспринимает протоны из внутренней среды с образованием Н20: 4Н+ + 4е + 02 —> 2Н20. В результате выброса ионов Н+ на внешнюю сторону мембраны митохондрий и создается электрохимический градиент протонов. Таким образом, сам механизм процессов, происходящих на мембранах хлоропластов и митохондрий, сходен. Однако имеются два основных отличия: 1) в случае хлоропластов источником энергии потока электронов служит энергия света, а у митохондрий — энергия окислительных процессов; 2) распределение протонов на мембране противоположно: у митохондрий протоны накапливаются на наружной стороне, а у хлоропластов — на внутренней.




Протонный градиент представляет собой как бы резервуар свободной энергии. Эту энергию можно использовать при обратном потоке протонов через мембрану. При этом происходит разрядка мембраны. В частности, энергия может быть затрачена на синтез АТФ. Процесс синтеза АТФ идет с помощью специального макромолекулярного комплекса, катализирующего синтез и гидролиз молекул АТФ в хлоропластах и митохондриях—АТФ-синтазы. Этот фермент локализован на мембранах в виде грибовидных частиц. Мембранная часть АТФ-синтазы («ножка») — фактор сопряжения F0 — представляет собой гидрофобный белковый комплекс. Фактор сопряжения F1 —выступает из мембраны в виде «шляпки». За расшифровку структуры комплекса F, и установление механизма образования АТФ исследователи Дж. Уокер и П. Бойер в 1997 г. были удостоены Нобелевской премии по химии.



В хлоропластах фактор сопряжения F1 ориентирован во внешнюю сторону мембран тилакоидов. В митохондриях комплекс F1 обращен в сторону матрикса, т. е. внутренней части митохондрии. Образование АТФ из АДФ и неорганического фосфата Фн происходит в каталитических центрах АТФ-синтазы, расположенных в комплексе F1. В последние годы появились данные о том, что каталитическая активность фермента связана с вращением отдельных субъединиц фактора F1 АТФ-синтаза — это фермент обратимого действия и в зависимости от условий может осуществлять не только синтез АТФ с поглощением, но и ее гидролиз с выделением энергии. Синтез АТФ обеспечивается потоком ионов водорода через АТФ-синтазу, который возникает за счет разности протонных потенциалов (протонный градиент) по обе стороны мембраны.



Существуют две гипотезы, объясняющие механизм синтеза АТФ — прямой и косвенный. Согласно прямому механизму, АДФ и Фн связываются с активным центром фермента, куда по каналу поступают протоны. Протоны взаимодействуют с кислородом Фн с образованием Н20. Это делает Фн активным, и он присоединяется к АДФ. После этого молекула АТФ отделяется от фермента.



Согласно второй гипотезе, синтез АТФ из АДФ и Фн происходит в активном центре фермента самопроизвольно. Однако образующаяся при этом молекула АТФ прочно связывается с ферментом, поэтому для ее освобождения затрачивается энергия протонного градиента. Предполагают, что структурные перестройки фермента, приводящие к высвобождению АТФ, связаны с циклическими процессами протонирования и депротонирования функционально важных групп фермента. Как уже обсуждалось, этот механизм в последние годы получил экспериментальные подтверждения. Доказательством того, что именно градиент протона обеспечивает фосфорилирование, являются опыты с разобщителями окисления и фосфорилирования. Как уже упоминалось, к таким разобщителям относится динитрофенол. Оказалось, что действие динитрофенола связано с тем, что он делает мембрану проницаемой для протонов и тем самым ликвидирует протонный градиент. При этом скорость окисления даже усиливается, однако образование АТФ не происходит. Таким образом, процесс окисления сопряжен с процессом фосфорилирования. Степень сопряженности окисления и фосфорилирования может быть разной в зависимости от условий и от состояния клеток. Показателем сопряженности окисления и фосфорилирования служит коэффициент фосфорилирования Р/О, который соответствует отношению количества связанного неорганического фосфора (АДФ + Фн —> АТФ) к поглощенному в процессе дыхания кислороду. Как уже рассматривалось выше, перенос двух электронов к кислороду по дыхательной цепи сопровождается не более чем тремя фосфорилированиями. Следовательно, коэффициент Р/О может быть не более 3. На величину Р/О оказывают влияние внешние условия. При засухе окисление усиливается, а накопление энергии в виде АТФ не происходит, коэффициент Р/О резко падает. Коэффициент фосфорилирования резко падает и при заболевании организмов. В ряде случаев может наблюдаться непосредственное использование энергии протонного градиента (∆μ Н+). Действительно, поскольку внутренняя сторона мембраны оказывается заряженной отрицательно, возникает трансмембранный потенциал. Катионы в силу электрического притяжения могут поступать и накапливаться во внутреннем пространстве митохондрий. Имеются данные, что протонный градиент может обеспечить также приток углеводов, в частности поступление саха­розы в ситовидные трубки. Таким образом, ∆μ Н+ обеспечивает осмотическую работу и транспорт веществ против градиента их концентрации. Наконец, показана возможность использования ∆μ Н+ на механическую работу (движение бактерий). Вместе с тем важно отметить, что ∆μ Н+ может играть роль как транспортная форма энергии, передаваясь вдоль мембран (В.П. Скулачев).