ВУЗ: Не указан

Категория: Не указан

Дисциплина: Не указана

Добавлен: 30.10.2019

Просмотров: 1161

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.
background image

The Kallikrein-Kinin System

31

related carboxypeptidase (ACE2) converts angiotensin I to
angiotensin 1-9. Circ Res. 2000;87:E1–E9.

68 Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Tang J, et al.

Hydrolysis of biological peptides by human angiotensin-
converting enzyme-related carboxypeptidase (ACE2). J Biol
Chem. 2002;28:28.

69 Tian XL, Pinto YM, Costerousse O, Franz WM, Lippolat A,

Hoffman S, et al. Over-expression of angiotensin converting
enzyme-1 augments cardiac hypertrophy in transgenic rats. Hum
Mol Genet. 2004;13:1441–1450.

70 Itoyama S, Keicho N, Quy T, Phi NC, Long HT, Ha le D, et al.

ACE1 polymorphism and progression of SARS. Biochem
Biophys Res Commun. 2004;323:1124–1129.

71 Hubert C, Houot AM, Corvol P, Soubrier F. Structure of the

angiotensin I-converting enzyme gene. Two alternate promoters
correspond to evolutionary steps of a duplicated gene. J Biol
Chem. 1991;266:15377–15383.

72 Blais C Jr, Marceau F, Rouleau JL, Adam A. The kallikrein-

kininogen-kinin system: lessons from the quantification of endo-
genous kinins. Peptides. 2000;21:1903–1940.

73 Erdos EG. Some old and some new ideas on kinin metabolism. J

Cardiovasc Pharmacol. 1990;15:S20–S24.

74 Inokuchi J, Nagamatsu A. Tripeptidyl carboxypeptidase activity

of kininase II (angiotensin-converting enzyme). Biochim Biophys

Acta. 1981;662:300–307.

75 Oshima G, Hiraga Y, Shirono K, Oh-ishi S, Sakakibara S,

Kinoshita T. Cleavage of des-Arg9-bradykinin by angiotensin I-
converting enzyme from pig kidney cortex. Experientia. 1985;
41:325–328.

76 Kondoh G, Tojo H, Nakatani Y, Komazawa N, Murata C,

Yamagata K, et al. Angiotensin-converting enzyme is a GPI-
anchored protein releasing factor crucial for fertilization. Nat
Med. 2005;11:160–166.

77 Tsujioka H, Misumi Y, Takami N, Ikehara Y. Posttranslational

modification of glycosylphosphatidylinositol (GPI)-specific
phospholipase D and its activity in cleavage of GPI anchors.
Biochem Biophys Res Commun. 1998;251:737–743.

78 Kohlstedt K, Shoghi F, Muller-Esterl W, Busse R, Fleming I.

CK2 phosphorylates the angiotensin-converting enzyme and
regulates its retention in the endothelial cell plasma membrane.
Circ Res. 2002;91:749–756

79 Kohlstedt K, Brandes RP, Muller-Esterl W, Busse R, Fleming I.

Angiotensin-converting enzyme is involved in outside-in signal-
ing in endothelial cells. Circ Res. 2004;94:60–67.

80 Rigat B, Hubert C, Alhenc-Gelas F, Cambien F, Corvol P,

Soubrier F. An insertion

/

deletion polymorphism in the angio-

tensin I-converting enzyme gene accounting for half the variance
of serum enzyme levels. J Clin Invest. 1990;86:1343–1346.

81 Danser AH, Schunkert H. Renin-angiotensin system gene poly-

morphisms: potential mechanisms for their association with
cardiovascular diseases. Eur J Pharmacol. 2000;410:303–316.

82 Brown NJ, Blais C Jr, Gandhi SK, Adam A. ACE insertion

/

deletion genotype affects bradykinin metabolism. J Cardiovasc

Pharmacol. 1998;32:373–377.

83 Mattu RK, Needham EW, Galton DJ, Frangos E, Clark AJ,

Caulfield M. A DNA variant at the angiotensin-converting
enzyme gene locus associates with coronary artery disease in
the Caerphilly Heart Study. Circulation. 1995;91:270–274.

84 Cambien F, Poirier O, Lecerf L, Evans A, Cambou JP, Arveiler

D, et al. Deletion polymorphism in the gene for angiotensin-
converting enzyme is a potent risk factor for myocardial infarc-

tion. Nature. 1992;359:641–644.

85 Kolsch H, Jessen F, Freymann N, Kreis M, Hentschel F, Maier

W, et al. ACE I

/

D polymorphism is a risk factor of Alzheimer’s

disease but not of vascular dementia. Neurosci Lett. 2005;
377:37–39.

86 Schunkert H, Hense HW, Holmer SR, Stender M, Perz S, Keil

U, et al. Association between a deletion polymorphism of the
angiotensin-converting-enzyme gene and left ventricular hyper-
trophy. N Engl J Med. 1994;330:1634–1638.

87 Marre M, Jeunemaitre X, Gallois Y, Rodier M, Chatellier G,

Sert C, et al. Contribution of genetic polymorphism in the renin-
angiotensin system to the development of renal complications
in insulin-dependent diabetes: Genetique de la Nephropathie
Diabetique (GENEDIAB) study group. J Clin Invest. 1997;99:
1585–1595.

88 Hooper NM. Families of zinc metalloproteases. FEBS Lett.

1994;354:1–6.

89 Turner AJ, Isaac RE, Coates D. The neprilysin (NEP) family of

zinc metalloendopeptidases: genomics and function. Bioessays.
2001;23:261–269.

90 Turner AJ, Tanzawa K. Mammalian membrane metallopepti-

dases: NEP, ECE, KELL, and PEX. Faseb J. 1997;11:355–364.

91 Bonvouloir N, Lemieux N, Crine P, Boileau G, DesGroseillers

L. Molecular cloning, tissue distribution, and chromosomal
localization of MMEL2, a gene coding for a novel human
member of the neutral endopeptidase-24.11 family. DNA Cell
Biol. 2001;20:493–498.

92 Barker PE, Shipp MA, D’Adamio L, Masteller EL, Reinherz EL.

The common acute lymphoblastic leukemia antigen gene maps
to chromosomal region 3 (q21 – q27). J Immunol. 1989;142:
283–287.

93 Kerr MA, Kenny AJ. The purification and specificity of a neutral

endopeptidase from rabbit kidney brush border. Biochem J.
1974;137:477–488.

94 Gafford JT, Skidgel RA, Erdos EG, Hersh LB. Human kidney

“enkephalinase”, a neutral metalloendopeptidase that cleaves
active peptides. Biochemistry. 1983;22:3265–3271.

95 Decarie A, Raymond P, Gervais N, Couture R, Adam A. Serum

interspecies differences in metabolic pathways of bradykinin and
[des-Arg9]BK: influence of enalaprilat. Am J Physiol. 1996;271:
H1340–H1347.

96 Iwata N, Tsubuki S, Takaki Y, Watanabe K, Sekiguchi M,

Hosoki E, et al. Identification of the major Abeta1-42-degrading
catabolic pathway in brain parenchyma: suppression leads to
biochemical and pathological deposition. Nat Med. 2000;6:143–
150.

97 Kanazawa M, Casley DJ, Sybertz EJ, Haslanger MF, Johnston

CI. Localization and characterization of neutral metallo-
endopeptidase (EC 3.4.24.11), the degradative enzyme for atrial
natriuretic peptide, in rat kidney using a radioiodinated neutral
metalloendopeptidase  inhibitor. J Pharmacol Exp Ther. 1992;
261:1231–1237.

98 Rawlings ND, Barrett AJ. MEROPS: the peptidase database.

Nucleic Acids Res. 2000;28:323–325.

99 Cottrell GS, Hooper NM, Turner AJ. Cloning, expression, and

characterization of human cytosolic aminopeptidase P: a single
manganese (II)-dependent enzyme. Biochemistry. 2000;39:
15121–15128.

100 Venema RC, Ju H, Zou R, Venema VJ, Ryan JW. Cloning and

tissue distribution of human membrane-bound aminopeptidase
P. Biochim Biophys Acta. 1997;1354:45–48.


background image

ME Moreau et al

32

101 Molinaro G, Carmona AK, Juliano MA, Juliano L, Malitsukaya

E, Yessine MA, et al. Human recombinant membrane-bound
aminopeptidase P: production of a soluble form and character-
ization using novel, internally quenched fluorescent substrates.
Biochem J. 2005;385:389–397.

102 Molinaro G, Boileau G, Adam A. Aminopeptidase P and vaso-

active peptides: from fundamental aspects to clinical interests.
In: Hooper NM, Lendeckel U, eds. Aminopeptidases in biology
and disease. London: Kluwer Academic

/

Plenum Publishers;

2004. p. 251–269.

103 Hooper NM, Hryszko J, Oppong SY, Turner AJ. Inhibition by

converting enzyme inhibitors of pig kidney aminopeptidase P.
Hypertension. 1992;19:281–285.

104 Ersahin C, Szpaderska AM, Orawski AT, Simmons WH.

Aminopeptidase P isozyme expression in human tissues and
peripheral blood mononuclear cell fractions. Arch Biochem
Biophys. 2005;435:303–310.

105 Sprinkle TJ, Caldwell C, Ryan JW. Cloning, chromosomal

sublocalization of the human soluble aminopeptidase P gene
(XPNPEP1) to 10q25.3 and conservation of the putative proton
shuttle and metal ligand binding sites with XPNPEP2. Arch
Biochem Biophys. 2000;378:51–56.

106 Sprinkle TJ, Stone AA, Venema RC, Denslow ND, Caldwell C,

Ryan JW. Assignment of the membrane-bound human amino-
peptidase P gene (XPNPEP2) to chromosome Xq25. Genomics.
1998;50:114–116.

107 Hooper NM, Turner AJ. Ectoenzymes of the kidney microvillar

membrane. Aminopeptidase P is anchored by a glycosyl-phos-
phatidylinositol moiety. FEBS Lett. 1988;229:340–344.

108 Ryan JW, Berryer P, Chung AY, Sheffy DH. Characterization of

rat pulmonary vascular aminopeptidase P in vivo: role in the
inactivation of bradykinin. J Pharmacol Exp Ther. 1994;269:
941–947.

109 Prechel MM, Orawski AT, Maggiora LL, Simmons WH. Effect

of a new aminopeptidase P inhibitor, apstatin, on bradykinin
degradation in the rat lung. J Pharmacol Exp Ther. 1995;275:
1136–1142.

110 Ersahin C, Simmons WH. Inhibition of both aminopeptidase P

and angiotensin-converting enzyme prevents bradykinin degra-
dation in the rat coronary circulation. J Cardiovasc Pharmacol.
1997;30:96–101.

111 Ryan JW, Papapetropoulos A, Ju H, Denslow ND, Antonov A,

Virmani R, et al. Aminopeptidase P is disposed on human
endothelial cells. Immunopharmacology. 1996;32:149–152.

112 Lasch J, Moschner S, Sann H, Zellmer S, Koelsch R. Amino-

peptidase P – a cell-surface antigen of endothelial and lymphoid
cells: catalytic and immuno-histotopical evidences. Biol Chem.
1998;379:705–709.

113 Harbeck HT, Mentlein R. Aminopeptidase P from rat brain.

Purification and action on bioactive peptides. Eur J Biochem.
1991;198:451–458.

114 Rusu I, Yaron A. Aminopeptidase P from human leukocytes. Eur

J Biochem. 1992;210:93–100.

115 Gilmartin L, O’Cuinn G. Dipeptidyl aminopeptidase IV and

aminopeptidase P, two proline specific enzymes from the cyto-
plasm of guinea-pig brain: their role in metabolism of peptides
containing consecutive prolines. Neurosci Res. 1999;34:1–11.

116 Simmons WH, Orawski AT. Membrane-bound aminopeptidase

P from bovine lung. Its purification, properties, and degradation
of bradykinin. J Biol Chem. 1992;267:4897–4903.

117 Orawski AT, Simmons WH. Purification and properties of

membrane-bound aminopeptidase P from rat lung. Biochemistry.
1995;34:11227–11236.

118 Yoshimoto T, Orawski AT, Simmons WH. Substrate specificity

of aminopeptidase P from Escherichia coli: comparison with
membrane-bound forms from rat and bovine lung. Arch
Biochem Biophys. 1994;311:28–34.

119 Blais C Jr, Marc-Aurele J, Simmons WH, Loute G, Thibault P,

Skidgel RA, et al. Des-Arg9-bradykinin metabolism in patients
who presented hypersensitivity reactions during hemodialysis:
role of serum ACE and aminopeptidase P. Peptides. 1999;20:
421–430.

120 Tan F, Chan SJ, Steiner DF, Schilling JW, Skidgel RA. Mole-

cular cloning and sequencing of the cDNA for human mem-
brane-bound carboxypeptidase M. Comparison with carboxy-
peptidases A, B, H, and N. J Biol Chem. 1989;264:13165–
13170.

121 Skidgel RA. Basic carboxypeptidases: regulators of peptide

hormone activity. Trends Pharmacol Sci. 1988;9:299–304.

122 Lambeir AM, Durinx C, Scharpe S, De Meester I. Dipeptidyl-

peptidase IV from bench to bedside: an update on structural
properties, functions, and clinical aspects of the enzyme DPP IV.
Crit Rev Clin Lab Sci. 2003;40:209–294.

123 Mentlein R. Dipeptidyl-peptidase IV (CD26) – role in the inacti-

vation of regulatory peptides. Regul Pept. 1999;85:9–24.

124 Olsen J, Kokholm K, Noren O, Sjostrom H. Structure and

expression of aminopeptidase N. Adv Exp Med Biol. 1997;421:
47–57.

125 Hoffmann T, Faust J, Neubert K, Ansorge S. Dipeptidyl

peptidase IV (CD 26) and aminopeptidase N (CD 13) catalyzed
hydrolysis of cytokines and peptides with N-terminal cytokine
sequences. FEBS Lett. 1993;336:61–64.

126 Ward PE, Benter IF, Dick L, Wilk S. Metabolism of vasoactive

peptides by plasma and purified renal aminopeptidase M.
Biochem Pharmacol. 1990;40:1725–1732.

127 Pelorosso FG, Brodsky PT, Zold CL, Rothlin RP. Potentiation of

des-Arg9-kallidin induced vasoconstrictor responses by metallo-
peptidase inhibition in isolated human umbilical artery. J
Pharmacol Exp Ther. 2005;313:1355–1360.

128 Drapeau G, deBlois D, Marceau F. Hypotensive effects of Lys-

des-Arg9-bradykinin and metabolically protected agonists of B1
receptors for kinins. J Pharmacol Exp Ther. 1991;259:997–1003.

129 Leeb-Lundberg LM, Marceau F, Muller-Esterl W, Pettibone DJ,

Zuraw BL. International union of pharmacology. XLV. Classifi-
cation of the kinin receptor family: from molecular mechanisms
to pathophysiological consequences. Pharmacol Rev. 2005;57:
27–77.

130 Marceau F, Hess JF, Bachvarov DR. The B1 receptors for

kinins. Pharmacol Rev. 1998;50:357–386.

131 Babiuk C, Marceau F, St-Pierre S, Regoli D. Kininases and

vascular responses to kinins. Eur J Pharmacol. 1982;78:167–174.

132 Regoli D, Barabe J, Park WK. Receptors for bradykinin in rabbit

aortae. Can J Physiol Pharmacol. 1977;55:855–867.

133 Vavrek RJ, Stewart JM. Competitive antagonists of bradykinin.

Peptides. 1985;6:161–164.

134 Hock FJ, Wirth K, Albus U, Linz W, Gerhards HJ, Wiemer G,

et al. Hoe 140 a new potent and long acting bradykinin-antago-
nist: in vitro studies. Br J Pharmacol. 1991;102:769–773.

135 Houle S, Larrivee JF, Bachvarova M, Bouthillier J, Bachvarov

DR, Marceau F. Antagonist-induced intracellular sequestration
of rabbit bradykinin B(2) receptor. Hypertension. 2000;35:
1319–1325.


background image

The Kallikrein-Kinin System

33

136 Regoli D, Nsa Allogho S, Rizzi A, Gobeil FJ. Bradykinin

receptors and their antagonists. Eur J Pharmacol. 1998;348:1–10.

137 Salvino JM, Seoane PR, Douty BD, Awad MM, Dolle RE,

Houck WT, et al. Design of potent non-peptide competitive
antagonists of the human bradykinin B2 receptor. J Med Chem.
1993;36:2583–2584.

138 Altamura M, Meini S, Quartara L, Maggi CA. Nonpeptide

antagonists for kinin receptors. Regul Pept. 1999;80:13–26.

139 Horlick RA, Ohlmeyer MH, Stroke IL, Strohl B, Pan G,

Schilling AE, et al. Small molecule antagonists of the bradykinin
B1 receptor. Immunopharmacology. 1999;43:169–177.

140 Wood MR, Kim JJ, Han W, Dorsey BD, Homnick CF, DiPardo

RM, et al. Benzodiazepines as potent and selective bradykinin
B1 antagonists. J Med Chem. 2003;46:1803–1806.

141 Morissette G, Fortin JP, Otis S, Bouthillier J, Marceau F. A

novel nonpeptide antagonist of the kinin B1 receptor: effects at
the rabbit receptor. J Pharmacol Exp Ther. 2004;311:1121–1130.

142 Ritchie TJ, Dziadulewicz EK, Culshaw AJ, Muller W, Burgess

GM, Bloomfield GC, et al. Potent and orally bioavailable non-
peptide antagonists at the human bradykinin B(1) receptor based
on a 2-alkylamino-5-sulfamoylbenzamide core. J Med Chem.
2004;47:4642–4644.

143 Gougat J, Ferrari B, Sarran L, Planchenault C, Poncelet M,

Maruani J, et al. SSR240612[(2R)-2-[((3R)-3-(1,3-benzodioxol-
5-yl)-3-[[(6-methoxy-2-naphthyl)sulfonyl] amino] propanoyl)
amino]-3-(4-[[2R,6S)-2,6-dimethylpiperidinyl]methyl]phenyl)-
N-isopropyl-N-methylpropanamide hydrochloride], a new non-
peptide antagonist of the bradykinin B1 receptor: biochemical
and pharmacological characterization. J Pharmacol Exp Ther.
2004;309:661–669.

144 Ma D, Xia C, Jiang J, Zhang J. First total synthesis of martinellic

acid, a naturally occurring bradykinin receptor antagonist. Org
Lett. 2001;3:2189–2191.

145 McEachern AE, Shelton ER, Bhakta S, Obernolte R, Bach C,

Zuppan P, et al. Expression cloning of a rat B2 bradykinin
receptor. Proc Natl Acad Sci U S A. 1991;88:7724–7728.

146 Menke JG, Borkowski JA, Bierilo KK, MacNeil T, Derrick AW,

Schneck KA, et al. Expression cloning of a human B1 brady-
kinin receptor. J Biol Chem. 1994;269:21583–21586.

147 Bachvarov DR, Hess JF, Menke JG, Larrivee JF, Marceau F.

Structure and genomic organization of the human B1 receptor
gene for kinins (BDKRB1). Genomics. 1996;33:374–381.

148 Yang X, Polgar P. Genomic structure of the human bradykinin

B1 receptor gene and preliminary characterization of its regula-
tory regions. Biochem Biophys Res Commun. 1996;222:718–
725.

149 Leeb-Lundberg LM, Mathis SA, Herzig MC. Antagonists of

bradykinin that stabilize a G-protein-uncoupled state of the B2
receptor act as inverse agonists in rat myometrial cells. J Biol
Chem. 1994;269:25970–25973.

150 Fredriksson R, Lagerstrom MC, Lundin LG, Schioth HB. The G-

protein-coupled receptors in the human genome form five main
families. Phylogenetic analysis, paralogon groups, and finger-
prints. Mol Pharmacol. 2003;63:1256–1272.

151 Couture R, Harrisson M, Vianna RM, Cloutier F. Kinin

receptors in pain and inflammation. Eur J Pharmacol. 2001;
429:161–176.

152 Kammerer S, Braun A, Arnold N, Roscher AA. The human

bradykinin B2 receptor gene: full length cDNA, genomic organi-
zation and identification of the regulatory region. Biochem
Biophys Res Commun. 1995;211:226–233.

153 Cayla C, Merino VF, Cabrini DA, Silva JA Jr, Pesquero JB,

Bader M. Structure of the mammalian kinin receptor gene locus.
Int Immunopharmacol. 2002;2:1721–1727.

154 Tschope C, Heringer-Walther S, Koch M, Spillmann F, Wandorf

M, Leitner E, et al. Upregulation of bradykinin B1-receptor
expression after myocardial infarction. Br J Pharmacol. 2000;
129:1537–1538.

155 Phagoo SB, Yaqoob M, McIntyre P, Jones C, Burgess GM.

Cytokines increase B1 bradykinin receptor mRNA and protein
levels in human lung fibroblasts. Biochem Soc Trans. 1997;
25:43S.

156 Zhou X, Polgar P, Taylor L. Roles for interleukin-1beta, phorbol

ester and a post-transcriptional regulator in the control of brady-
kinin B1 receptor gene expression. Biochem J. 1998;330:361–
366.

157 Phagoo SB, Yaqoob M, Herrera-Martinez E, McIntyre P, Jones

C, Burgess GM. Regulation of bradykinin receptor gene expres-
sion in human lung fibroblasts. Eur J Pharmacol. 2000;397:237–
246.

158 Davis AJ, Perkins MN. Induction of B1 receptors in vivo in a

model of persistent inflammatory mechanical hyperalgesia in the
rat. Neuropharmacology. 1994;33:127–133.

159 Larrivee JF, Bachvarov DR, Houle F, Landry J, Huot J, Marceau

F. Role of the mitogen-activated protein kinases in the
expression of the kinin B1 receptors induced by tissue injury.
J Immunol. 1998;160:1419–1426.

160 Campos MM, Souza GE, Calixto JB. In vivo B1 kinin-receptor

upregulation Evidence for involvement of protein kinases and
nuclear factor kappaB pathways. Br J Pharmacol. 1999;127:
1851–1859.

161 Ganju P, Davis A, Patel S, Nunez X, Fox A. p38 stress-activated

protein kinase inhibitor reverses bradykinin B(1) receptor-
mediated component of inflammatory hyperalgesia. Eur J
Pharmacol. 2001;421:191–199.

162 Medeiros R, Cabrini DA, Ferreira J, Fernandes ES, Mori MA,

Pesquero JB, et al. Bradykinin B1 receptor expression induced
by tissue damage in the rat portal vein: a critical role for
mitogen-activated protein kinase and nuclear factor-kappaB
signaling pathways. Circ Res. 2004;94:1375–1382.

163 Sabourin T, Morissette G, Bouthillier J, Levesque L, Marceau F.

Expression of kinin B(1) receptor in fresh or cultured rabbit
aortic smooth muscle: role of NF-kappa B. Am J Physiol Heart
Circ Physiol. 2002;283:H227–H237.

164 Sardi SP, Rey-Ares V, Pujol-Lereis VA, Serrano SA, Rothlin

RP. Further pharmacological evidence of nuclear factor-kappaB
pathway involvement in bradykinin B(1) receptor-sensitized
responses in human umbilical vein. J Pharmacol Exp Ther.
2002;301:975–980.

165 Schanstra JP, Bataille E, Marin Castano ME, Barascud Y, Hirtz

C, Pesquero JB, et al. The B1-agonist [des-Arg10]-kallidin
activates transcription factor NF-kappaB and induces homo-
logous upregulation of the bradykinin B1-receptor in cultured
human lung fibroblasts. J Clin Invest. 1998;101:2080–2091.

166 Phagoo SB, Poole S, Leeb-Lundberg LM. Autoregulation of

bradykinin receptors: agonists in the presence of interleukin-
1beta shift the repertoire of receptor subtypes from B2 to B1 in
human lung fibroblasts. Mol Pharmacol. 1999;56:325–333.

167 Bastian S, Paquet JL, Robert C, Cremers B, Loillier B, Larrivee

JF, et al. Interleukin 8 (IL-8) induces the expression of kinin B1
receptor in human lung fibroblasts. Biochem Biophys Res
Commun. 1998;253:750–755.


background image

ME Moreau et al

34

168 Sabourin T, Guay K, Houle S, Bouthillier J, Bachvarov PR,

Adam A, et al. Absence of ligand-induced regulation of kinin
receptor expression in the rabbit. Br J Pharmacol. 2001;133:
1154–1162.

169 Yang X, Taylor L, Yu J, Fenton MJ, Polgar P. Mediator caused

induction of a human bradykinin B1 receptor minigene: partici-
pation of c-Jun in the process. J Cell Biochem. 2001;82:163–
170.

170 Pesquero JB, Lindsey CJ, Paiva AC, Ganten D, Bader M.

Transcriptional regulatory elements in the rat bradykinin B2
receptor gene. Immunopharmacology. 1996;33:36–41.

171 Baptista HA, Avellar MC, Araujo RC, Pesquero JL, Schanstra

JP, Bascands JL, et al. Transcriptional regulation of the rat
bradykinin B2 receptor gene: identification of a silencer element.
Mol Pharmacol. 2002;62:1344–1355.

172 Schmidlin F, Scherrer D, Daeffler L, Bertrand C, Landry Y, Gies

JP. Interleukin-1beta induces bradykinin B2 receptor gene ex-
pression through a prostanoid cyclic AMP-dependent pathway in
human bronchial smooth muscle cells. Mol Pharmacol.
1998;53:1009–1015.

173 Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G.

Effects of an angiotensin-converting-enzyme inhibitor, ramipril,
on cardiovascular events in high-risk patients. The Heart
Outcomes Prevention Evaluation Study Investigators. N Engl J
Med. 2000;342:145–153.

174 Busse R, Fleming I. Molecular responses of endothelial tissue to

kinins. Diabetes. 1996;45 Suppl 1:S8–S13.

175 Velarde V, Ullian ME, Morinelli TA, Mayfield RK, Jaffa AA.

Mechanisms of MAPK activation by bradykinin in vascular
smooth muscle cells. Am J Physiol. 1999;277:C253–C261.

176 Fleming I, Fisslthaler B, Busse R. Calcium signaling in endo-

thelial cells involves activation of tyrosine kinases and leads to
activation of mitogen-activated protein kinases. Circ Res.
1995;76:522–529.

177 Fleming I, Fisslthaler B, Busse R. Interdependence of calcium

signaling and protein tyrosine phosphorylation in human endo-
thelial cells. J Biol Chem. 1996;271:11009–11015.

178 Harris MB, Ju H, Venema VJ, Blackstone M, Venema RC. Role

of heat shock protein 90 in bradykinin-stimulated endothelial
nitric oxide release. Gen Pharmacol. 2000;35:165–170.

179 Marrero MB, Venema VJ, Ju H, He H, Liang H, Caldwell RB,

et al. Endothelial nitric oxide synthase interactions with G-
protein-coupled receptors. Biochem J. 1999;343 Pt 2:335–340.

180 Venema RC. Post-translational mechanisms of endothelial nitric

oxide synthase regulation by bradykinin. Int Immunopharmacol.
2002;2:1755–1762.

181 Ju H, Venema VJ, Liang H, Harris MB, Zou R, Venema RC.

Bradykinin activates the Janus-activated kinase

/

signal trans-

ducers and activators of transcription (JAK

/

STAT) pathway in

vascular endothelial cells: localization of JAK

/

STAT signalling

proteins in plasmalemmal caveolae. Biochem J. 2000;351:257–
264.

182 Faussner A, Proud D, Towns M, Bathon JM. Influence of the

cytosolic carboxyl termini of human B1 and B2 kinin receptors
on receptor sequestration, ligand internalization, and signal
transduction. J Biol Chem. 1998;273:2617–2623.

183 de Weerd WF, Leeb-Lundberg LM. Bradykinin sequesters B2

bradykinin receptors and the receptor-coupled Galpha subunits
Galphaq and Galphai in caveolae in DDT1 MF-2 smooth muscle
cells. J Biol Chem. 1997;272:17858–17866.

184 Blaukat A, Alla SA, Lohse MJ, Muller-Esterl W. Ligand-

induced phosphorylation

/

dephosphorylation  of the endogenous

bradykinin B2 receptor from human fibroblasts. J Biol Chem.
1996;271:32366–32374.

185 Houle S, Molinaro G, Adam A, Marceau F. Tissue kallikrein

actions at the rabbit natural or recombinant kinin B2 receptors.
Hypertension. 2003;41:611–617.

186 Blaukat A, Pizard A, Rajerison RM, Alhenc-Gelas F, Muller-

Esterl W, Dikic I. Activation of mitogen-activated protein kinase
by the bradykinin B2 receptor is independent of receptor phos-
phorylation and phosphorylation-triggered internalization. FEBS
Lett. 1999;451:337–341.

187 Sabourin T, Bastien L, Bachvarov DR, Marceau F. Agonist-

induced translocation of the kinin B(1) receptor to caveolae-
related rafts. Mol Pharmacol. 2002;61:546–553.

188 Colman RW, Wong PY. Participation of Hageman factor depen-

dent pathways in human disease states. Thromb Haemost.
1977;38:751–775.

189 Braat EA, Dooijewaard G, Rijken DC. Fibrinolytic properties of

activated FXII. Eur J Biochem. 1999;263:904–911.

190 Agostoni A, Aygoren-Pursun E, Binkley KE, Blanch A, Bork K,

Bouillet L, et al. Hereditary and acquired angioedema: problems
and progress: proceedings of the third C1 esterase inhibitor
deficiency workshop and beyond. J Allergy Clin Immunol.
2004;114:S51–S131.

191 Nussberger J, Cugno M, Amstutz C, Cicardi M, Pellacani A,

Agostoni A. Plasma bradykinin in angio-oedema. Lancet. 1998;
351:1693–1697.

192 Nussberger J, Cugno M, Cicardi M. Bradykinin-mediated

angioedema. N Engl J Med. 2002;347:621–622.

193 Davis AE. The pathogenesis of hereditary angioedema. Transfus

Apheresis Sci. 2003;29:195–203.

194 Cugno M, Nussberger J, Cicardi M, Agostoni A. Bradykinin and

the pathophysiology of angioedema. Int Immunopharmacol.
2003;3:311–317.

195 Agostoni A, Cicardi M. Hereditary and acquired C1-inhibitor

deficiency: biological and clinical characteristics in 235 patients.
Medicine (Baltimore). 1992;71:206–215.

196 Zuraw BL. Current and future therapy for hereditary angio-

edema. Clin Immunol. 2005;114:10–16.

197 Han ED, MacFarlane RC, Mulligan AN, Scafidi J, Davis AE

3rd. Increased vascular permeability in C1 inhibitor-deficient
mice mediated by the bradykinin type 2 receptor. J Clin Invest.
2002;109:1057–1063.

198 Bork K, Dewald G. Hereditary angioedema type III, angioedema

associated with angiotensin II receptor antagonists, and female
sex. Am J Med. 2004;116:644–645.

199 Engh RA, Huber R, Bode W, Schulze AJ. Divining the serpin

inhibition mechanism: a suicide substrate ‘springe’? Trends
Biotechnol. 1995;13:503–510.

200 Alston TA. Aprotinin. Int Anesthesiol Clin. 2004;42:81–91.
201 Nagaya M, Futamura M, Kato J, Niimi N, Fukuta S. Application

of a new anticoagulant (Nafamostat Mesilate) to control hemor-
rhagic complications during extracorporeal membrane oxygen-
ation – a preliminary report. J Pediatr Surg. 1997;32:531–535.

202 Nakamura K, Onitsuka T, Yano M, Nagahama H, Nakamura E,

Matsuzaki Y. Nafamostat mesilate treatment during open heart
operation in immune thrombocytopenic purpura. Ann Thorac
Surg. 2000;70:2161–2163.

203 De Serres J, Groner A, Lindner J. Safety and efficacy of

pasteurized C1 inhibitor concentrate (Berinert((R)) P) in heredi-
tary angioedema: a review. Transfus Apheresis Sci. 2003;29:


background image

The Kallikrein-Kinin System

35

247–254.

204 Han Lee ED, Pappalardo E, Scafidi J, Davis AE. Approaches

toward reversal of increased vascular permeability in C1
inhibitor deficient mice. Immunol Lett. 2003;89:155–160.

205 Cicardi M, Zingale L. How do we treat patients with hereditary

angioedema. Transfus Apheresis Sci. 2003;29:221–227.

206 Pappalardo E, Zingale LC, Cicardi M. Increased expression of

C1-inhibitor mRNA in patients with hereditary angioedema
treated with Danazol. Immunol Lett. 2003;86:271–276.

207 Wellington K, Wagstaff AJ. Tranexamic acid: a review of its use

in the management of menorrhagia. Drugs. 2003;63:1417–1433.

208 Dunn CJ, Goa KL. Tranexamic acid: a review of its use in

surgery and other indications. Drugs. 1999;57:1005–1032.

209 Rosenkrans B, Russmann S, Reichen J, Brunner-Ferber F, Bork

K, Knolle J. Clinical proof-of-concept fort he bradykinin B2
antagonist; icatibant in liver cirrhosis and hereditary angio-
edema. 

Peptide Receptors Montreal 2004 Symposium. Montreal,

Canada

, 2004.

210 Mattsson E, Herwald H, Cramer H, Persson K, Sjobring U,

Bjorck L. Staphylococcus aureus induces release of bradykinin
in human plasma. Infect Immun. 2001;69:3877–3882.

211 Ueno A, Tokumasu T, Naraba H, Oh-ishi S. The mediators

involved in endotoxin-induced vascular permeability increase in
the rat skin and their interactions. Jpn J Pharmacol. 1996;
70:285–290.

212 Shima C, Majima M, Katori M. A stable metabolite, Arg-Pro-

Pro-Gly-Phe, of bradykinin in the degradation pathway in human
plasma. Jpn J Pharmacol. 1992;60:111–119.

213 Morinelli TA, Webb JG, Jaffa AA, Privitera PJ, Margolius HS.

A metabolic fragment of bradykinin, Arg-Pro-Pro-Gly-Phe,
protects against the deleterious effects of lipopolysaccharide in
rats. J Pharmacol Exp Ther. 2001;296:71–76.

214 Nieman MT, Warnock M, Hasan AA, Mahai F, Lucchesi BR,

Brown NJ, et al. The preparation and characterization of novel
peptide antagonists to thrombin and factor VIIa and activation of
protease-activated receptor 1. J Pharmacol Exp Ther. 2004;311:
492–501.

215 Verresen L, Waer M, Vanrenterghem Y, Michielsen P. Angio-

tensin-converting-enzyme inhibitors and anaphylactoid reactions
to high-flux membrane dialysis. Lancet. 1990;336:1360–1362.

216 Cyr M, Eastlund T, Blais C Jr, Rouleau JL, Adam A. Bradykinin

metabolism and hypotensive transfusion reactions. Transfusion.
2001;41:136–150.

217 Cugno M, Cicardi M, Agostoni A. Activation of the contact

system and fibrinolysis in autoimmune acquired angioedema: a
rationale for prophylactic use of tranexamic acid. J Allergy Clin
Immunol. 1994;93:870–876.

218 Pretorius M, Rosenbaum D, Vaughan DE, Brown NJ. Angio-

tensin-converting enzyme inhibition increases human vascular
tissue-type plasminogen activator release through endogenous
bradykinin. Circulation. 2003;107:579–585.

219 Soubrier F, Hubert C, Testut P, Nadaud S, Alhenc-Gelas F,

Corvol P. Molecular biology of the angiotensin I converting
enzyme: I. Biochemistry and structure of the gene. J Hypertens.
1993;11:471–476.

220 Crackower MA, Sarao R, Oudit GY, Yagil C, Kozieradzki I,

Scanga SE, et al. Angiotensin-converting enzyme 2 is an
essential regulator of heart function. Nature. 2002;417:822–828.

221 Mancini GB, Henry GC, Macaya C, O’Neill BJ, Pucillo AL,

Carere RG, et al. Angiotensin-converting enzyme inhibition with
quinapril improves endothelial vasomotor dysfunction in

patients with coronary artery disease. The TREND (Trial on
Reversing ENdothelial Dysfunction) Study. Circulation. 1996;
94:258–265.

222 Yusuf S, Sleight P, Pogue J, Bosch J, Davies R, Dagenais G.

Effects of an angiotensin-converting-enzyme inhibitor, ramipril,
on cardiovascular events in high-risk patients. The Heart
Outcomes Prevention Evaluation Study Investigators. N Engl J
Med. 2000;342:145–153.

223 White HD. Should all patients with coronary disease receive

angiotensin-converting-enzyme inhibitors? Lancet. 2003;362:755

757.

224 Pfeffer MA, Braunwald E, Moye LA, Basta L, Brown EJ Jr,

Cuddy TE, et al. Effect of captopril on mortality and morbidity
in patients with left ventricular dysfunction after myocardial
infarction. Results of the survival and ventricular enlargement
trial. The SAVE Investigators. N Engl J Med. 1992;327:669–
677.

225 Kober L, Torp-Pedersen C, Carlsen JE, Bagger H, Eliasen P,

Lyngborg K, et al. A clinical trial of the angiotensin-converting-
enzyme inhibitor trandolapril in patients with left ventricular
dysfunction after myocardial infarction. Trandolapril Cardiac
Evaluation (TRACE) Study Group. N Engl J Med. 1995;333:
1670–1676.

226 Borghi C, Bacchelli S, Degli Esposti D, Ambrosioni E. A review

of the angiotensin-converting enzyme inhibitor, zofenopril, in
the treatment of cardiovascular diseases. Expert Opin Pharmaco-
ther. 2004;5:1965–1977.

227 Lewis EJ. The treatment of hypertension in diabetic nephro-

pathy. J Hum Hypertens. 1996;10:675–677.

228 Pahor M, Psaty BM, Alderman MH, Applegate WB, Williamson

JD, Furberg CD. Therapeutic benefits of ACE inhibitors and
other antihypertensive drugs in patients with type 2 diabetes.
Diabetes Care. 2000;23:888–892.

229 Boos CJ, Dawes M. ACE cardiovascular protection: EUROPA

versus HOPE. Cardiovasc Drugs Ther. 2004;18:179–180.

230 Perez M, Molinaro G, Adam A. Bradykinin, an important

mediator of the cardiovascular effects of metallopeptidase
inhibitors: experimental and clinical evidences. J Clin Basic
Cardiol. 2001;4:39–46.

231 Gainer JV, Morrow JD, Loveland A, King DJ, Brown NJ. Effect

of bradykinin-receptor blockade on the response to angiotensin-
converting-enzyme inhibitor in normotensive and hypertensive
subjects. N Engl J Med. 1998;339:1285–1292.

232 Molinaro G, Rouleau JL, Adam A. Vasopeptidase inhibitors: a

new class of dual zinc metallopeptidase inhibitors for cardio-
renal therapeutics. Curr Opin Pharmacol. 2002;2:131–141.

233 Trippodo NC, Fox M, Monticello TM, Panchal BC, Asaad MM.

Vasopeptidase inhibition with omapatrilat improves cardiac
geometry and survival in cardiomyopathic hamsters more than
does ACE inhibition with captopril. J Cardiovasc Pharmacol.
1999;34:782–790.

234 McClean DR, Ikram H, Garlick AH, Richards AM, Nicholls

MG, Crozier IG. The clinical, cardiac, renal, arterial and neuro-
hormonal effects of omapatrilat, a vasopeptidase inhibitor, in
patients with chronic heart failure. J Am Coll Cardiol. 2000;
36:479–486.

235 Rouleau JL, Pfeffer MA, Stewart DJ, Isaac D, Sestier F, Kerut

EK, et al. Comparison of vasopeptidase inhibitor, omapatrilat,
and lisinopril on exercise tolerance and morbidity in patients
with heart failure: IMPRESS randomised trial. Lancet. 2000;
356:615–620.