Файл: Система защиты информации в банковских системах.pdf

ВУЗ: Не указан

Категория: Курсовая работа

Дисциплина: Не указана

Добавлен: 30.04.2023

Просмотров: 67

Скачиваний: 2

ВНИМАНИЕ! Если данный файл нарушает Ваши авторские права, то обязательно сообщите нам.

Обмен электронными данными (ОЭД) — это обмен деловыми, коммерческими, финансовыми электронными документами между компьютерами в сети. Это могут быть заказы, платежные инструкции, накладные, квитанции и т.д.

Обмен данными обеспечивает своевременное взаимодействие торговых партнеров (клиентов, поставщиков, торговых посредников и др.) на любом этапе подготовки торговой сделки или заключения контракта либо реализации договоренностей. На этапе оплаты контракта и перевода денежных средств ОЭД может приводить к электронному обмену финансовыми документами. При этом создается интерактивная среда для финансовых операций:

  • Возможно ознакомление торговых партнеров с предложениями товаров и услуг, выбор необходимого товара/услуги, уточнение коммерческих условий (стоимости и сроков поставки, торговых скидок, гарантийных и сервисных обязательств) в реальном масштабе времени;
  • Заказ товара/услуг или запрос контрактного предложения в реальном масштабе времени;
  • Оперативный контроль поставки товара, получение по электронной почте сопроводительных документов (накладных, фактур, комплектующих ведомостей и т.д.);
  • Подтверждение завершения поставки товара/услуги, выставление и оплата счетов;
  • Выполнение банковских кредитных и платежных операций.

К достоинствам ОЭД следует отнести:

  • Уменьшение стоимости операций за счет перехода на безбумажную технологию. Эксперты оценивают стоимость обработки и ведения бумажной документации в 3-8% от общей стоимости коммерческих операций и доставки товаров;
  • Повышение скорости расчета и оборота денег;
  • Повышение удобства расчетов.

Банки в США и Западной Европе уже осознали свою ключевую роль в распространении ОЭД и поняли те значительные преимущества, которые дает более тесное взаимодействие с деловыми и личными партнерами. ОЭД помогает банкам в предоставлении услуг клиентам, особенно мелким, тем, которые ранее не могли позволить себе ими воспользоваться из-за их высокой стоимости.

Частным случаем ОЭД являются электронные платежи - обмен финансовыми документами между клиентами и банками, между банками и другими финансовыми и коммерческими организациями.

Суть концепции электронных платежей заключается в том, что пересылаемые по линиям связи сообщения, должным образом оформленные и переданные, являются основанием для выполнения одной или нескольких банковских операций. Никаких бумажных документов для выполнения этих операций в принципе не требуется (хотя они могут быть выданы). Другими словами, пересылаемое по линиям связи сообщение несет информацию о том, что отправитель выполнил некоторые операции над своим счетом, в частности над корреспондентским счетом банка-получателя (в роли которого может выступать клиринговый центр), и что получатель должен выполнить определенные в сообщении операции. На основании такого сообщения можно переслать или получить деньги, открыть кредит, оплатить покупку или услугу и выполнить любую другую банковскую операцию. Такие сообщения называются электронными деньгами, а выполнение банковских операций на основании посылки или получения таких сообщений - электронными платежами. Естественно, весь процесс осуществления электронных платежей нуждается в надежной защите. Иначе банк и его клиентов ожидают серьезные неприятности.


Электронные платежи применяются при межбанковских, торговых и персональных расчетах.

Межбанковские и торговые расчеты производятся между организациями (юридическими лицами), поэтому их иногда называют корпоративными. Расчеты с участием физических лиц-клиентов получили название персональных.

Большинство крупных хищений в банковских системах прямо или косвенно связано именно с системами электронных платежей.

Любая организация, которая хочет стать клиентом какой-либо системы электронных платежей, либо организовать собственную систему, должна отдавать себе в этом отчет. Для надежной работы система электронных платежей должна быть хорошо защищена.

Торговые расчеты производятся между различными торговыми организациями. Банки в этих расчетах участвуют как посредники при перечислении денег со счета организации-плательщика на счет организации-получателя. Торговые расчеты чрезвычайно важны для общего успеха программы электронных платежей. Объем финансовых операций различных компаний обычно составляет значительную часть общего объема операций банка.

Виды торговых расчетов сильно различаются для разных организаций, но всегда при их осуществлении обрабатывается два типа информации: платежных сообщений и вспомогательная (статистика, сводки, уведомления). Для финансовых организаций наибольший интерес представляет, конечно, информация платежных сообщений - номера счетов, суммы, баланс и т.д. Для торговых организаций оба вида сведений одинаково важны – первый дает ключ к финансовому состоянию, второй – помогает при принятии решений и выработке политики.

Для определения общих проблем защиты систем ОЭД рассмотрим в прохождение документа при ОЭД. Можно выделить три основных этапа:

  • подготовка документа к отправке;
  • передача документа по каналу связи;
  • прием документа и его обратное преобразование.

С точки зрения защиты в системах ОЭД существуют следующие уязвимые места:

1. Пересылка платежных и других сообщений между банками или между банком и клиентом;

2. Обработка информации внутри организаций отправителя и получателя;

3. Доступ клиента к средствам, аккумулированным на счете.

Одно из наиболее уязвимых мест в системе ОЭД – пересылка платежных и других сообщений между банками, или между банком и банкоматом, или между банком и клиентом. При пересылке платежных и других сообщений возникают следующие проблемы:

  • внутренние системы организаций Получателя и Отправителя должны быть приспособлены к получению/отправке электронных документов и обеспечивать необходимую защиту при их обработке внутри организации (защита оконечных систем);
  • взаимодействие Получателя и Отправителя документа осуществляется опосредованно – через канал связи. Это порождает три типа проблем:
    1. взаимного опознавания абонентов (проблема установления аутентификации при установлении соединения);
    2. защиты документов, передаваемых по каналам связи (обеспечение целостности и конфиденциальности документов);
    3. защиты самого процесса обмена документами (проблема доказательства отправления/доставки документа);
  • в общем случае Отправитель и Получатель документа принадлежат к различным организациям и друг от друга независимы. Этот факт порождает проблему недоверия – будут ли предприняты необходимые меры по данному документу (обеспечение исполнения документа).

В системах ОЭД должны быть реализованы следующие механизмы, обеспечивающие реализацию функций защиты на отдельных узлах системы ОЭД и на уровне протоколов высокого уровня:

- равноправная аутентификацию абонентов;

- невозможность отказа от авторства сообщения/приема сообщения;

- контроль целостности сообщения;

- обеспечение конфиденциальности сообщения;

- управление доступом на оконечных системах;

- гарантии доставки сообщения;

- регистрация последовательности сообщений;

- контроль целостности последовательности сообщений;

- обеспечение конфиденциальности потока сообщений.

Полнота решения рассмотренных выше проблем сильно зависит от правильного выбора системы шифрования. Система шифрования (или криптосистема) представляет собой совокупность алгоритмов шифрования и методов распространения ключей. Правильный выбор системы шифрования помогает:

  • скрыть содержание документа от посторонних лиц (обеспечение конфиденциальности документа) путем шифрования его содержимого;
  • обеспечить совместное использование документа группой пользователей системы ОЭД путем криптографического разделения информации и соответствующего протокола распределения ключей. При этом для лиц, не входящих в группу, документ недоступен;
  • своевременно обнаружить искажение, подделку документа (обеспечение целостности документа) путем введения криптографического контрольного признака;
  • удостовериться в том, что абонент, с которым происходит взаимодействие в сети является именно тем, за кого он себя выдает (аутентификация абонента/источника данных).

Следует отметить, что при защите систем ОЭД большую роль играет не столько шифрование документа, сколько обеспечение его целостности и аутентификация абонентов (источника данных) при проведении сеанса связи. Поэтому механизмы шифрования в таких системах играют обычно вспомогательную роль.

1.2 Методы защиты информации

Современная криптография включает в себя следующие основные разделы:

  • криптосистемы с секретным ключом (классическая криптография);
  • криптосистемы с открытым ключом;
  • криптографические протоколы.

Именно криптография лежит в основе защиты банковских систем.

Все современные шифры базируются на принципе Кирхгофа, согласно которому секретность шифра обеспечивается секретностью ключа, а не секретностью алгоритма шифрования. В некоторых ситуациях нет никаких причин делать общедоступным описание сути криптосистемы. Сохраняя такую информацию в тайне, можно дополнительно повысить надежность шифра. Однако полагаться на секретность этой информации не следует, так как рано или поздно она будет скомпрометирована. При создании или при анализе стойкости криптосистем не следует недооценивать возможностей противника.


Методы оценки качества крипто алгоритмов, используемые на практике:

  • Всевозможные попытки их вскрытия. В этом случае многое зависит от квалификации, опыта, интуиции крипто аналитиков и от правильной оценки возможностей противника.
  • Анализ сложности алгоритмов дешифрования. Оценку стойкости шифра заменяют оценкой минимальной сложности алгоритма его вскрытия.
  • Оценка статической безопасности шифра. Должна отсутствовать статическая зависимость между входной и выходной последовательностью.

Основные объекты изучения классической криптографии показаны на рис. 1, где А – законный пользователь, W – противник или крипто аналитик.

Рис.1. Криптографическая защита информации

Процедуры зашифрования Е (encryption) и расшифрования D (decryption) можно представить в следующем виде:

C = E(M) = Ke{M},

M = D(C) = Kd{C},

где M (message) и C (ciphertext) – открытый и зашифрованный тексты, Ke и Kd – ключи зашифрования и расшифрования.

Различают два типа алгоритмов шифрования – симметричные (с секретным ключом) и асимметричные (с открытым ключом). В первом случае обычно ключ расшифрования совпадает с ключом зашифрования, т.е

Ke = Kd =K,

либо знание ключа зашифрования позволяет легко вычислить ключ расшифрования. В асимметричных алгоритмах такая возможность отсутствует: для зашифрования и расшифрования используются разные ключи, причем знание одного из них не дает практической возможности определить другой. Поэтому, если получатель А информации сохраняет в секрете ключ расшифрования KdA = SKA, ключ зашифрования KeA = PKA может быть сделан общедоступным (SK – secret key, PK – public key).

В процессе шифрования информация делится на порции величиной от одного до сотен бит. Как правило, поточные шифры оперируют с битами открытого и закрытого текстов, а блочные – с блоками фиксированной длины. Главное отличие между этими двумя методами заключается в том, что в блочных шифрах для шифрования всех порций используется один и тот же ключ, а в поточных – для каждой порции используется свой ключ той же размерности.

Простейшей и в то же время наиболее надежной из всех систем шифрования является так называемая схема однократного использования. Формируется m-разрядная случайная двоичная последовательность – ключ шифра, известный отправителю и получателю сообщения. Отправитель производит побитовое сложение по модулю 2 ключа и m-разрядной двоичной последовательности, соответствующей пересылаемому сообщению:


Ci = Ki (+) Mi,

где Mi, Ki и Ci – очередной i-й бит соответственно исходного сообщения, ключа и зашифрованного сообщения, m – число битов открытого текста. Процесс расшифрования сводится к повторной генерации ключевой последовательности и наложению ее на зашифрованные данные. Уравнение расшифрования имеет вид:

Mi = Ki (+) Ci, i = 1..m.

К. Шенноном доказано, что, если ключ является фрагментом истинно случайной двоичной последовательности с равномерным законом распределения, причем его длина равна длине исходного сообщения и используется этот ключ только один раз, после чего уничтожается, такой шифр является абсолютно стойким, его невозможно раскрыть, даже если крипто аналитик располагает неограниченным запасом времени и неограниченным набором вычислительных ресурсов. Действительно, противнику известно только зашифрованное сообщение С, при этом все различные ключевые последовательности К возможны и равновероятны, а значит, возможны и любые перемещения М, т.е. крипто алгоритм не дает никакой информации об открытом тексте.

Необходимые и достаточные условия абсолютной стойкости шифра:

  • полная случайность ключа;
  • равенство длин ключа и открытого текста;
  • однократное использование ключа.

Абсолютная стойкость рассмотренной схемы оплачивается слишком большой ценой, она чрезвычайно дорогая и непрактичная. Основной ее недостаток – это равенство объема ключевой информации и суммарного объема передаваемых сообщений. Применение схемы оправдано лишь в нечасто используемых каналах связи для шифрования исключительно важных сообщений.

Таким образом, построить эффективный крипто алгоритм можно, лишь отказавшись от абсолютной стойкости. Возникает задача разработки такого теоретически нестойкого шифра, для вскрытия которого противнику потребовалось бы выполнить такое число операций, которое неосуществимо на современных и ожидаемых в ближайшей перспективе вычислительных средствах за разумное время. В первую очередь следует иметь схему, которая использует ключ небольшой разрядности, который в дальнейшем выполняет функцию «зародыша», порождающего значительно более длинную ключевую последовательность.

Данный результат может быть достигнут при использовании гаммирования. Гаммированием называют процедуру наложения на входную информационную последовательность гаммы шифра, т. е. последовательности с выходов генератора псевдослучайных последовательностей (ПСП). Последовательность называется псевдослучайной, если по своим статистическим свойствам она неотличима от истинно случайной последовательности, но в отличие от последней является детерминированной, т. е. знание алгоритма ее формирования дает возможность ее повторения необходимое число раз. Если символы входной информационной последовательности и гаммы представлены в двоичном виде, наложение чаще всего реализуется с помощью операции поразрядного сложения по модулю два. Надежность шифрования методом гаммирования определяется качеством генератора гаммы.